From 1d700ab734aa9b6711eb31796beb25cb7659d8e0 Mon Sep 17 00:00:00 2001 From: Prefetch Date: Tue, 20 Dec 2022 20:11:25 +0100 Subject: More improvements to knowledge base --- source/know/concept/self-steepening/index.md | 29 +++++++++++++++++++--------- 1 file changed, 20 insertions(+), 9 deletions(-) (limited to 'source/know/concept/self-steepening') diff --git a/source/know/concept/self-steepening/index.md b/source/know/concept/self-steepening/index.md index e06b0b5..fd48e0f 100644 --- a/source/know/concept/self-steepening/index.md +++ b/source/know/concept/self-steepening/index.md @@ -27,7 +27,8 @@ We will use the following ansatz, consisting of an arbitrary power profile $$P$$ with a phase $$\phi$$: $$\begin{aligned} - A(z,t) = \sqrt{P(z,t)} \, \exp\!\big(i \phi(z,t)\big) + A(z,t) + = \sqrt{P(z,t)} \, \exp\!\big(i \phi(z,t)\big) \end{aligned}$$ For a long pulse travelling over a short distance, it is reasonable to @@ -35,16 +36,19 @@ neglect dispersion ($$\beta_2 = 0$$). Inserting the ansatz then gives the following, where $$\varepsilon = \gamma / \omega_0$$: $$\begin{aligned} - 0 &= i \frac{1}{2} \frac{P_z}{\sqrt{P}} - \sqrt{P} \phi_z + \gamma P \sqrt{P} + i \varepsilon \frac{3}{2} P_t \sqrt{P} - \varepsilon P \sqrt{P} \phi_t + 0 + &= i \frac{1}{2} \frac{P_z}{\sqrt{P}} - \sqrt{P} \phi_z + \gamma P \sqrt{P} + i \varepsilon \frac{3}{2} P_t \sqrt{P} - \varepsilon P \sqrt{P} \phi_t \end{aligned}$$ This results in two equations, respectively corresponding to the real and imaginary parts: $$\begin{aligned} - 0 &= - \phi_z - \varepsilon P \phi_t + \gamma P + 0 + &= - \phi_z - \varepsilon P \phi_t + \gamma P \\ - 0 &= P_z + \varepsilon 3 P_t P + 0 + &= P_z + \varepsilon 3 P_t P \end{aligned}$$ The phase $$\phi$$ is not so interesting, so we focus on the latter equation for $$P$$. @@ -53,7 +57,8 @@ which shows that more intense parts of the pulse will lag behind compared to the rest: $$\begin{aligned} - P(z,t) = f(t - 3 \varepsilon z P) + P(z,t) + = f(t - 3 \varepsilon z P) \end{aligned}$$ Where $$f$$ is the initial power profile: $$f(t) = P(0,t)$$. @@ -85,7 +90,8 @@ $$\begin{aligned} = 1 + 3 \varepsilon z f_\mathrm{min}' \qquad \implies \qquad \boxed{ - L_\mathrm{shock} \equiv -\frac{1}{3 \varepsilon f_\mathrm{min}'} + L_\mathrm{shock} + \equiv -\frac{1}{3 \varepsilon f_\mathrm{min}'} } \end{aligned}$$ @@ -99,7 +105,8 @@ with $$T_0 = 25\:\mathrm{fs}$$, $$P_0 = 3\:\mathrm{kW}$$, $$\beta_2 = 0$$ and $$\gamma = 0.1/\mathrm{W}/\mathrm{m}$$: $$\begin{aligned} - f(t) = P(0,t) = P_0 \exp\!\Big(\! -\!\frac{t^2}{T_0^2} \Big) + f(t) + = P(0,t) = P_0 \exp\!\Big(\! -\!\frac{t^2}{T_0^2} \Big) \end{aligned}$$ @@ -107,9 +114,11 @@ Its steepest points are found to be at $$2 t^2 = T_0^2$$, so $$f_\mathrm{min}'$$ and $$L_\mathrm{shock}$$ are given by: $$\begin{aligned} - f_\mathrm{min}' = - \frac{\sqrt{2} P_0}{T_0} \exp\!\Big(\!-\!\frac{1}{2}\Big) + f_\mathrm{min}' + = - \frac{\sqrt{2} P_0}{T_0} \exp\!\Big(\!-\!\frac{1}{2}\Big) \quad \implies \quad - L_\mathrm{shock} = \frac{T_0}{3 \sqrt{2} \varepsilon P_0} \exp\!\Big(\frac{1}{2}\Big) + L_\mathrm{shock} + = \frac{T_0}{3 \sqrt{2} \varepsilon P_0} \exp\!\Big(\frac{1}{2}\Big) \end{aligned}$$ This example Gaussian pulse therefore has a theoretical @@ -127,6 +136,7 @@ Nevertheless, the general trends are nicely visible: the trailing slope becomes extremely steep, and the spectrum broadens so much that dispersion cannot be neglected anymore. +{% comment %} When self-steepening is added to the nonlinear Schrödinger equation, it no longer conserves the total pulse energy $$\int |A|^2 \dd{t}$$. Fortunately, the photon number $$N_\mathrm{ph}$$ is still @@ -137,6 +147,7 @@ $$\begin{aligned} N_\mathrm{ph}(z) = \int_0^\infty \frac{|\tilde{A}(z,\omega)|^2}{\omega} \dd{\omega} } \end{aligned}$$ +{% endcomment %} -- cgit v1.2.3