From 7ec42764de400df4db629780f3c758f553ac5a93 Mon Sep 17 00:00:00 2001 From: Prefetch Date: Fri, 9 Jun 2023 23:33:22 +0200 Subject: Improve knowledge base --- .../know/concept/sturm-liouville-theory/index.md | 58 ++++++++++++---------- 1 file changed, 31 insertions(+), 27 deletions(-) (limited to 'source/know/concept/sturm-liouville-theory/index.md') diff --git a/source/know/concept/sturm-liouville-theory/index.md b/source/know/concept/sturm-liouville-theory/index.md index 0ac7476..bff57af 100644 --- a/source/know/concept/sturm-liouville-theory/index.md +++ b/source/know/concept/sturm-liouville-theory/index.md @@ -18,6 +18,7 @@ and that the corresponding eigenvalue problem, known as a of eigenfunctions. + ## General operator Consider the most general form of a second-order linear @@ -65,7 +66,7 @@ $$[p_0(f^* g' - (f^*)' g)]_a^b = 0$$, leaving: $$\begin{aligned} \inprod{f}{\hat{L} g} - &= \big[ p_0 \big( f^* g' - (f^*)' g \big) \big]_a^b + \Inprod{\hat{L}^\dagger f}{g} + &= \big[ p_0 \big( f^* g' - (f^*)' g \big) \big]_a^b + \inprod{\hat{L}^\dagger f}{g} = \inprod{\hat{L}^\dagger f}{g} \end{aligned}$$ @@ -115,18 +116,19 @@ $$\begin{aligned} The latter is a differential equation for $$p(x)$$, which we solve by integration: -$$\begin{gathered} - \frac{p_1(x)}{p_0(x)} = \frac{1}{p(x)} \dv{p}{x} - \quad \implies \quad - \frac{p_1(x)}{p_0(x)} \dd{x} = \frac{1}{p(x)} \dd{p} +$$\begin{aligned} + \frac{p_1(x)}{p_0(x)} \dd{x} + &= \frac{1}{p(x)} \dd{p} \\ \implies \quad - \int_a^x \frac{p_1(\xi)}{p_0(\xi)} \dd{\xi} = \int_{p(a)}^{p(x)} \frac{1}{f} \dd{f} - = \ln\!\Big( \frac{p(x)}{p(a)} \Big) + \int \frac{p_1(x)}{p_0(x)} \dd{x} + &= \int \frac{1}{p} \dd{p} + = \ln\!\big( p(x) \big) \\ - \implies \quad - p(x) = p(a) \exp\!\Big( \int_a^x \frac{p_1(\xi)}{p_0(\xi)} \dd{\xi} \Big) -\end{gathered}$$ + \implies \qquad\qquad + p(x) + &= \exp\!\bigg( \int \frac{p_1(x)}{p_0(x)} \dd{x} \bigg) +\end{aligned}$$ Now that we have $$p(x)$$ and $$q(x)$$, we can define a new operator $$\hat{L}_p$$ as follows: @@ -153,6 +155,7 @@ $$\begin{aligned} \end{aligned}$$ + ## Eigenvalue problem A **Sturm-Liouville problem** (SLP) is analogous to a matrix eigenvalue problem, @@ -166,7 +169,7 @@ $$\begin{aligned} \end{aligned}$$ Necessarily, $$w(x) > 0$$ except in isolated points, where $$w(x) = 0$$ is allowed; -the point is that any inner product $$\Inprod{f}{w g}$$ may never be zero due to $$w$$'s fault. +the point is that any inner product $$\inprod{f}{w g}$$ may never be zero due to $$w$$'s fault. Furthermore, the convention is that $$u(x)$$ cannot be trivially zero. In our derivation of $$\hat{L}_{SL}$$, @@ -212,7 +215,7 @@ $$\begin{aligned} &= (\lambda_m^* - \lambda_n) \int_a^b u_n u_m^* w \:dx \\ \inprod{u_m}{\hat{L}_{SL} u_n} - \inprod{\hat{L}_{SL} u_m}{u_n} - &= (\lambda_m^* - \lambda_n) \Inprod{u_m}{w u_n} + &= (\lambda_m^* - \lambda_n) \inprod{u_m}{w u_n} \end{aligned}$$ The operator $$\hat{L}_{SL}$$ is self-adjoint by definition, @@ -220,17 +223,17 @@ so the left-hand side vanishes, leaving us with: $$\begin{aligned} 0 - &= (\lambda_m^* - \lambda_n) \Inprod{u_m}{w u_n} + &= (\lambda_m^* - \lambda_n) \inprod{u_m}{w u_n} \end{aligned}$$ -When $$m = n$$, the inner product $$\Inprod{u_n}{w u_n}$$ is real and positive +When $$m = n$$, the inner product $$\inprod{u_n}{w u_n}$$ is real and positive (assuming $$u_n$$ is not trivially zero, in which case it would be disqualified anyway). In this case we thus know that $$\lambda_n^* = \lambda_n$$, i.e. the eigenvalue $$\lambda_n$$ is real for any $$n$$. When $$m \neq n$$, then $$\lambda_m^* - \lambda_n$$ may or may not be zero, depending on the degeneracy. If there is no degeneracy, we -see that $$\Inprod{u_m}{w u_n} = 0$$, i.e. the eigenfunctions are orthogonal. +see that $$\inprod{u_m}{w u_n} = 0$$, i.e. the eigenfunctions are orthogonal. In case of degeneracy, manual orthogonalization is needed, but as it turns out, this is guaranteed to be doable, using e.g. the [Gram-Schmidt method](/know/concept/gram-schmidt-method/). @@ -240,8 +243,8 @@ and all the corresponding eigenfunctions $$u(x)$$ are mutually orthogonal**: $$\begin{aligned} \boxed{ - \Inprod{u_m(x)}{w(x) u_n(x)} - = \Inprod{u_n}{w u_n} \delta_{nm} + \inprod{u_m(x)}{w(x) u_n(x)} + = \inprod{u_n}{w u_n} \delta_{nm} = A_n \delta_{nm} } \end{aligned}$$ @@ -257,6 +260,7 @@ in other words, there always exists a *lowest* eigenvalue $$\lambda_0 > -\infty$ known as the **ground state**. + ## Completeness Not only are the eigenfunctions $$u_n(x)$$ of an SLP orthogonal, they @@ -287,18 +291,18 @@ By integrating we get inner products on both the left and the right: $$\begin{aligned} \int_a^b f(x) w(x) u_m^*(x) \dd{x} - &= \int_a^b \Big(\sum_{n = 0}^\infty a_n u_n(x) w(x) u_m^*(x)\Big) \dd{x} + &= \int_a^b \bigg( \sum_{n = 0}^\infty a_n u_n(x) w(x) u_m^*(x) \bigg) \dd{x} \\ - \Inprod{u_m}{w f} - &= \sum_{n = 0}^\infty a_n \Inprod{u_m}{w u_n} + \inprod{u_m}{w f} + &= \sum_{n = 0}^\infty a_n \inprod{u_m}{w u_n} \end{aligned}$$ Because the eigenfunctions of an SLP are mutually orthogonal, the summation disappears: $$\begin{aligned} - \Inprod{u_m}{w f} - &= \sum_{n = 0}^\infty a_n \Inprod{u_m}{w u_n} + \inprod{u_m}{w f} + &= \sum_{n = 0}^\infty a_n \inprod{u_m}{w u_n} = \sum_{n = 0}^\infty a_n A_n \delta_{nm} = a_m A_m \end{aligned}$$ @@ -310,8 +314,8 @@ function $$f(x)$$ onto the normalized eigenfunctions $$u_n(x) / A_n$$: $$\begin{aligned} \boxed{ a_n - = \frac{\Inprod{u_n}{w f}}{A_n} - = \frac{\Inprod{u_n}{w f}}{\Inprod{u_n}{w u_n}} + = \frac{\inprod{u_n}{w f}}{A_n} + = \frac{\inprod{u_n}{w f}}{\inprod{u_n}{w u_n}} } \end{aligned}$$ @@ -321,10 +325,10 @@ after inserting the expression for $$a_n$$: $$\begin{aligned} f(x) - &= \sum_{n = 0}^\infty \frac{1}{A_n} \Inprod{u_n}{w f} u_n(x) - = \int_a^b \Big(\sum_{n = 0}^\infty \frac{1}{A_n} u_n^*(\xi) w(\xi) f(\xi) u_n(x) \Big) \dd{\xi} + &= \sum_{n = 0}^\infty \frac{1}{A_n} \inprod{u_n}{w f} u_n(x) + = \int_a^b \bigg(\sum_{n = 0}^\infty \frac{1}{A_n} u_n^*(\xi) w(\xi) f(\xi) u_n(x) \bigg) \dd{\xi} \\ - &= \int_a^b f(\xi) \Big(\sum_{n = 0}^\infty \frac{1}{A_n} u_n^*(\xi) w(\xi) u_n(x) \Big) \dd{\xi} + &= \int_a^b f(\xi) \bigg(\sum_{n = 0}^\infty \frac{1}{A_n} u_n^*(\xi) w(\xi) u_n(x) \bigg) \dd{\xi} \end{aligned}$$ Upon closer inspection, the parenthesized summation -- cgit v1.2.3