--- title: "Alfvén waves" sort_title: "Alfven waves" # sic date: 2022-01-31 categories: - Physics - Plasma physics - Plasma waves layout: "concept" --- In the [magnetohydrodynamic](/know/concept/magnetohydrodynamics/) description of a plasma, we split the velocity $$\vb{u}$$, electric current $$\vb{J}$$, [magnetic field](/know/concept/magnetic-field/) $$\vb{B}$$ and [electric field](/know/concept/electric-field/) $$\vb{E}$$ like so, into a constant uniform equilibrium (subscript $$0$$) and a small unknown perturbation (subscript $$1$$): $$\begin{aligned} \vb{u} = \vb{u}_0 + \vb{u}_1 \qquad \vb{J} = \vb{J}_0 + \vb{J}_1 \qquad \vb{B} = \vb{B}_0 + \vb{B}_1 \qquad \vb{E} = \vb{E}_0 + \vb{E}_1 \end{aligned}$$ Inserting this decomposition into the ideal form of the generalized Ohm's law and keeping only terms that are first-order in the perturbation, we get: $$\begin{aligned} 0 &= (\vb{E}_0 + \vb{E}_1) + (\vb{u}_0 + \vb{u}_1) \cross (\vb{B}_0 + \vb{B}_1) \\ &= \vb{E}_1 + \vb{u}_1 \cross \vb{B}_0 \end{aligned}$$ We do this for the momentum equation too, assuming that $$\vb{J}_0 \!=\! 0$$ (to be justified later). Note that the temperature is set to zero, such that the pressure vanishes: $$\begin{aligned} \rho \pdv{\vb{u}_1}{t} = \vb{J}_1 \cross \vb{B}_0 \end{aligned}$$ Where $$\rho$$ is the uniform equilibrium density. We would like an equation for $$\vb{J}_1$$, which is provided by the magnetohydrodynamic form of Ampère's law: $$\begin{aligned} \nabla \cross \vb{B}_1 = \mu_0 \vb{J}_1 \qquad \implies \quad \vb{J}_1 = \frac{1}{\mu_0} \nabla \cross \vb{B}_1 \end{aligned}$$ Substituting this into the momentum equation, and differentiating with respect to $$t$$: $$\begin{aligned} \rho \pdvn{2}{\vb{u}_1}{t} = \frac{1}{\mu_0} \bigg( \Big( \nabla \cross \pdv{}{\vb{B}1}{t} \Big) \cross \vb{B}_0 \bigg) \end{aligned}$$ For which we can use Faraday's law to rewrite $$\ipdv{\vb{B}_1}{t}$$, incorporating Ohm's law too: $$\begin{aligned} \pdv{\vb{B}_1}{t} = - \nabla \cross \vb{E}_1 = \nabla \cross (\vb{u}_1 \cross \vb{B}_0) \end{aligned}$$ Inserting this into the momentum equation for $$\vb{u}_1$$ thus yields its final form: $$\begin{aligned} \rho \pdvn{2}{\vb{u}_1}{t} = \frac{1}{\mu_0} \bigg( \Big( \nabla \cross \big( \nabla \cross (\vb{u}_1 \cross \vb{B}_0) \big) \Big) \cross \vb{B}_0 \bigg) \end{aligned}$$ Suppose the magnetic field is pointing in $$z$$-direction, i.e. $$\vb{B}_0 = B_0 \vu{e}_z$$. Then Faraday's law justifies our earlier assumption that $$\vb{J}_0 = 0$$, and the equation can be written as: $$\begin{aligned} \pdvn{2}{\vb{u}_1}{t} = v_A^2 \bigg( \Big( \nabla \cross \big( \nabla \cross (\vb{u}_1 \cross \vu{e}_z) \big) \Big) \cross \vu{e}_z \bigg) \end{aligned}$$ Where we have defined the so-called **Alfvén velocity** $$v_A$$ to be given by: $$\begin{aligned} \boxed{ v_A \equiv \sqrt{\frac{B_0^2}{\mu_0 \rho}} } \end{aligned}$$ Now, consider the following plane-wave ansatz for $$\vb{u}_1$$, with wavevector $$\vb{k}$$ and frequency $$\omega$$: $$\begin{aligned} \vb{u}_1(\vb{r}, t) &= \vb{u}_1 \exp(i \vb{k} \cdot \vb{r} - i \omega t) \end{aligned}$$ Inserting this into the above differential equation for $$\vb{u}_1$$ leads to: $$\begin{aligned} \omega^2 \vb{u}_1 = v_A^2 \bigg( \Big( \vb{k} \cross \big( \vb{k} \cross (\vb{u}_1 \cross \vu{e}_z) \big) \Big) \cross \vu{e}_z \bigg) \end{aligned}$$ To evaluate this, we rotate our coordinate system around the $$z$$-axis such that $$\vb{k} = (0, k_\perp, k_\parallel)$$, i.e. the wavevector's $$x$$-component is zero. Calculating the cross products: $$\begin{aligned} \omega^2 \vb{u}_1 &= v_A^2 \bigg( \Big( \begin{bmatrix} 0 \\ k_\perp \\ k_\parallel \end{bmatrix} \cross \big( \begin{bmatrix} 0 \\ k_\perp \\ k_\parallel \end{bmatrix} \cross ( \begin{bmatrix} u_{1x} \\ u_{1y} \\ u_{1z} \end{bmatrix} \cross \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} ) \big) \Big) \cross \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \bigg) \\ &= v_A^2 \bigg( \Big( \begin{bmatrix} 0 \\ k_\perp \\ k_\parallel \end{bmatrix} \cross \big( \begin{bmatrix} 0 \\ k_\perp \\ k_\parallel \end{bmatrix} \cross \begin{bmatrix} u_{1y} \\ -u_{1x} \\ 0 \end{bmatrix} \big) \Big) \cross \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \bigg) \\ &= v_A^2 \bigg( \Big( \begin{bmatrix} 0 \\ k_\perp \\ k_\parallel \end{bmatrix} \cross \begin{bmatrix} k_\parallel u_{1x} \\ k_\parallel u_{1y} \\ -k_\perp u_{1y} \end{bmatrix} \Big) \cross \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \bigg) \\ &= v_A^2 \bigg( \begin{bmatrix} -(k_\perp^2 \!+ k_\parallel^2) u_{1y} \\ k_\parallel^2 u_{1x} \\ -k_\perp k_\parallel u_{1x} \end{bmatrix} \cross \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \bigg) \\ &= v_A^2 \begin{bmatrix} k_\parallel^2 u_{1x} \\ (k_\perp^2 \!+ k_\parallel^2) u_{1y} \\ 0 \end{bmatrix} \end{aligned}$$ We rewrite this equation in matrix form, using that $$k_\perp^2 \!+ k_\parallel^2 = k^2 \equiv |\vb{k}|^2$$: $$\begin{aligned} \begin{bmatrix} \omega^2 - v_A^2 k_\parallel^2 & 0 & 0 \\ 0 & \omega^2 - v_A^2 k^2 & 0 \\ 0 & 0 & \omega^2 \end{bmatrix} \vb{u}_1 = 0 \end{aligned}$$ This has the form of an eigenvalue problem for $$\omega^2$$, meaning we must find non-trivial solutions, where we cannot simply choose the components of $$\vb{u}_1$$ to satisfy the equation. To achieve this, we demand that the matrix' determinant is zero: $$\begin{aligned} \big(\omega^2 - v_A^2 k_\parallel^2\big) \: \big(\omega^2 - v_A^2 k^2\big) \: \omega^2 = 0 \end{aligned}$$ This equation has three solutions for $$\omega^2$$, one for each of its three factors being zero. The simplest case $$\omega^2 = 0$$ is of no interest to us, because we are looking for waves. The first interesting case is $$\omega^2 = v_A^2 k_\parallel^2$$, yielding the following dispersion relation: $$\begin{aligned} \boxed{ \omega = \pm v_A k_\parallel } \end{aligned}$$ The resulting waves are called **shear Alfvén waves**. From the eigenvalue problem, we see that in this case $$\vb{u}_1 = (u_{1x}, 0, 0)$$, meaning $$\vb{u}_1 \cdot \vb{k} = 0$$: these waves are **transverse**. The phase velocity $$v_p$$ and group velocity $$v_g$$ are as follows, where $$\theta$$ is the angle between $$\vb{k}$$ and $$\vb{B}_0$$: $$\begin{aligned} v_p = \frac{|\omega|}{k} = v_A \frac{k_\parallel}{k} = v_A \cos(\theta) \qquad \qquad v_g = \pdv{|\omega|}{k} = v_A \end{aligned}$$ The other interesting case is $$\omega^2 = v_A^2 k^2$$, which leads to so-called **compressional Alfvén waves**, with the simple dispersion relation: $$\begin{aligned} \boxed{ \omega = \pm v_A k } \end{aligned}$$ Looking at the eigenvalue problem reveals that $$\vb{u}_1 = (0, u_{1y}, 0)$$, meaning $$\vb{u}_1 \cdot \vb{k} = u_{1y} k_\perp$$, so these waves are not necessarily transverse, nor longitudinal (since $$k_\parallel$$ is free). The phase velocity $$v_p$$ and group velocity $$v_g$$ are given by: $$\begin{aligned} v_p = \frac{|\omega|}{k} = v_A \qquad \qquad v_g = \pdv{|\omega|}{k} = v_A \end{aligned}$$ The mechanism behind both of these oscillations is magnetic tension: the waves are "ripples" in the field lines, which get straightened out by Faraday's law, but the ions' inertia causes them to overshoot and form ripples again. ## References 1. M. Salewski, A.H. Nielsen, *Plasma physics: lecture notes*, 2021, unpublished.