--- title: "Bloch's theorem" sort_title: "Bloch's theorem" date: 2021-02-22 categories: - Quantum mechanics layout: "concept" --- In quantum mechanics, **Bloch's theorem** states that, given a potential $$V(\vb{r})$$ which is periodic on a lattice, i.e. $$V(\vb{r}) = V(\vb{r} + \vb{a})$$ for a primitive lattice vector $$\vb{a}$$, then it follows that the solutions $$\psi(\vb{r})$$ to the time-independent Schrödinger equation take the following form, where the function $$u(\vb{r})$$ is periodic on the same lattice, i.e. $$u(\vb{r}) = u(\vb{r} + \vb{a})$$: $$ \begin{aligned} \boxed{ \psi(\vb{r}) = u(\vb{r}) e^{i \vb{k} \cdot \vb{r}} } \end{aligned} $$ In other words, in a periodic potential, the solutions are simply plane waves with a periodic modulation, known as **Bloch functions** or **Bloch states**. This is suprisingly easy to prove: if the Hamiltonian $$\hat{H}$$ is lattice-periodic, then both $$\psi(\vb{r})$$ and $$\psi(\vb{r} + \vb{a})$$ are eigenstates with the same energy: $$ \begin{aligned} \hat{H} \psi(\vb{r}) = E \psi(\vb{r}) \qquad \hat{H} \psi(\vb{r} + \vb{a}) = E \psi(\vb{r} + \vb{a}) \end{aligned} $$ Now define the unitary translation operator $$\hat{T}(\vb{a})$$ such that $$\psi(\vb{r} + \vb{a}) = \hat{T}(\vb{a}) \psi(\vb{r})$$. From the previous equation, we then know that: $$ \begin{aligned} \hat{H} \hat{T}(\vb{a}) \psi(\vb{r}) = E \hat{T}(\vb{a}) \psi(\vb{r}) = \hat{T}(\vb{a}) \big(E \psi(\vb{r})\big) = \hat{T}(\vb{a}) \hat{H} \psi(\vb{r}) \end{aligned} $$ In other words, if $$\hat{H}$$ is lattice-periodic, then it will commute with $$\hat{T}(\vb{a})$$, i.e. $$[\hat{H}, \hat{T}(\vb{a})] = 0$$. Consequently, $$\hat{H}$$ and $$\hat{T}(\vb{a})$$ must share eigenstates $$\psi(\vb{r})$$: $$ \begin{aligned} \hat{H} \:\psi(\vb{r}) = E \:\psi(\vb{r}) \qquad \qquad \hat{T}(\vb{a}) \:\psi(\vb{r}) = \tau \:\psi(\vb{r}) \end{aligned} $$ Since $$\hat{T}$$ is unitary, its eigenvalues $$\tau$$ must have the form $$e^{i \theta}$$, with $$\theta$$ real. Therefore a translation by $$\vb{a}$$ causes a phase shift, for some vector $$\vb{k}$$: $$ \begin{aligned} \psi(\vb{r} + \vb{a}) = \hat{T}(\vb{a}) \:\psi(\vb{r}) = e^{i \theta} \:\psi(\vb{r}) = e^{i \vb{k} \cdot \vb{a}} \:\psi(\vb{r}) \end{aligned} $$ Let us now define the following function, keeping our arbitrary choice of $$\vb{k}$$: $$ \begin{aligned} u(\vb{r}) = e^{- i \vb{k} \cdot \vb{r}} \:\psi(\vb{r}) \end{aligned} $$ As it turns out, this function is guaranteed to be lattice-periodic for any $$\vb{k}$$: $$ \begin{aligned} u(\vb{r} + \vb{a}) &= e^{- i \vb{k} \cdot (\vb{r} + \vb{a})} \:\psi(\vb{r} + \vb{a}) \\ &= e^{- i \vb{k} \cdot \vb{r}} e^{- i \vb{k} \cdot \vb{a}} e^{i \vb{k} \cdot \vb{a}} \:\psi(\vb{r}) \\ &= e^{- i \vb{k} \cdot \vb{r}} \:\psi(\vb{r}) \\ &= u(\vb{r}) \end{aligned} $$ Then Bloch's theorem follows from isolating the definition of $$u(\vb{r})$$ for $$\psi(\vb{r})$$.