--- title: "Boltzmann equation" date: 2022-10-02 categories: - Physics - Thermodynamics - Fluid mechanics layout: "concept" --- Consider a collection of particles, each with its own position $\vb{r}$ and velocity $\vb{v}$. We can thus define a probability density function $f(\vb{r}, \vb{v}, t)$ describing the expected number of particles at $(\vb{r}, \vb{v})$ at time $t$. Let the total number of particles $N$ be conserved, then clearly: $$\begin{aligned} N = \iint_{-\infty}^\infty f(\vb{r}, \vb{v}, t) \dd{\vb{r}} \dd{\vb{v}} \end{aligned}$$ At equilibrium, all processes affecting the particles no longer have a net effect, so $f$ is fixed: $$\begin{aligned} \dv{f}{t} = 0 \end{aligned}$$ If each particle's momentum only changes due to collisions, then a non-equilibrium state can be described as follows, very generally: $$\begin{aligned} \dv{f}{t} = \bigg(\! \pdv{f}{t} \!\bigg)_\mathrm{\!col} \end{aligned}$$ Where the right-hand side simply means "all changes in $f$ due to collisions". Applying the chain rule to the left-hand side then yields: $$\begin{aligned} \bigg(\! \pdv{f}{t} \!\bigg)_\mathrm{\!col} &= \pdv{f}{t} + \bigg( \pdv{f}{x} \dv{x}{t} \!+\! \pdv{f}{y} \dv{y}{t} \!+\! \pdv{f}{z} \dv{z}{t} \bigg) + \bigg( \pdv{f}{v_x} \dv{v_x}{t} \!+\! \pdv{f}{v_y} \dv{v_y}{t} \!+\! \pdv{f}{v_z} \dv{v_z}{t} \bigg) \\ &= \pdv{f}{t} + \bigg( v_x \pdv{f}{x} \!+\! v_y \pdv{f}{y} \!+\! v_z \pdv{f}{z} \bigg) + \bigg( a_x \pdv{f}{v_x} \!+\! a_y \pdv{f}{v_y} \!+\! a_z \pdv{f}{v_z} \bigg) \\ &= \pdv{f}{t} + \vb{v} \cdot \nabla f + \vb{a} \cdot \pdv{f}{\vb{v}} \end{aligned}$$ Where we have introduced the shorthand $\ipdv{f}{\vb{v}}$. Inserting Newton's second law $\vb{F} = m \vb{a}$ leads us to the **Boltzmann equation** or **Boltzmann transport equation** (BTE): $$\begin{aligned} \boxed{ \pdv{f}{t} + \vb{v} \cdot \nabla f + \frac{\vb{F}}{m} \cdot \pdv{f}{\vb{v}} = \bigg(\! \pdv{f}{t} \!\bigg)_\mathrm{\!col} } \end{aligned}$$ But what about the collision term? Expressions for it exist, which are almost exact in many cases, but unfortunately also quite difficult to work with. In addition, $f$ is a 7-dimensional function, so the BTE is already hard to solve without collisions. We only present the simplest case, known as the **Bhatnagar-Gross-Krook approximation**: if the equilibrium state $f_0(\vb{r}, \vb{v})$ is known, then each collision brings the system closer to $f_0$: $$\begin{aligned} \pdv{f}{t} + \vb{v} \cdot \nabla f + \frac{\vb{F}}{m} \cdot \pdv{f}{\vb{v}} = \frac{f_0 - f}{\tau} \end{aligned}$$ Where $\tau$ is the average collision period. The right-hand side is called the **Krook term**. ## Moment equations From the definition of $f$, we see that integrating over all $\vb{v}$ yields the particle density $n$: $$\begin{aligned} n(\vb{r}, t) = \int_{-\infty}^\infty f(\vb{r}, \vb{v}, t) \dd{\vb{v}} \end{aligned}$$ Consequently, a purely velocity-dependent quantity $Q(\vb{v})$ can be averaged like so: $$\begin{aligned} \Expval{Q} = \frac{1}{n} \int_{-\infty}^\infty Q(\vb{r}, \vb{v}, t) \: f(\vb{r}, \vb{v}, t) \dd{\vb{v}} \end{aligned}$$ With that in mind, we multiply the collisionless BTE equation by $Q(\vb{v})$ and integrate, assuming that $\vb{F}$ does not depend on $\vb{v}$: $$\begin{aligned} 0 &= \int_{-\infty}^\infty Q \bigg( \pdv{f}{t} + \vb{v} \cdot \nabla f + \frac{\vb{F}}{m} \cdot \pdv{f}{\vb{v}} \bigg) \dd{\vb{v}} \\ &= \int Q \pdv{f}{t} \dd{\vb{v}} + \int (\vb{v} \cdot \nabla f) \: Q \dd{\vb{v}} + \frac{\vb{F}}{m} \cdot \int Q \pdv{f}{\vb{v}} \dd{\vb{v}} \\ &= \pdv{}{t}\int Q f \dd{\vb{v}} + \int \Big( \nabla \cdot (\vb{v} f) - f (\nabla \cdot \vb{v}) \Big) Q \dd{\vb{v}} + \frac{\vb{F}}{m} \cdot \int \bigg( \pdv{}{\vb{v}} (Q f) - f \pdv{Q}{\vb{v}} \bigg) \dd{\vb{v}} \end{aligned}$$ The first integral is simply $n \Expval{Q}$. In the second integral, note that $\vb{v}$ is a coordinate and hence not dependent on $\vb{r}$, so $\nabla \cdot \vb{v} = 0$. Since $f$ is a probability density, $f \to 0$ for $\vb{v} \to \pm\infty$, so the first term in the third integral vanishes after it is integrated: $$\begin{aligned} 0 &= \pdv{}{t}\big(n \Expval{Q}\big) + \int \nabla \cdot (\vb{v} f) \: Q \dd{\vb{v}} + \frac{\vb{F}}{m} \cdot \bigg( \Big[ Q f \Big]_{-\infty}^\infty - \int f \pdv{Q}{\vb{v}} \dd{\vb{v}} \bigg) \\ &= \pdv{}{t}\big(n \Expval{Q}\big) + \nabla \cdot \int Q \vb{v} f \dd{\vb{v}} - \frac{\vb{F}}{m} \cdot \int f \pdv{Q}{\vb{v}} \dd{\vb{v}} \end{aligned}$$ We thus arrive at the prototype of the BTE's so-called **moment equations**: $$\begin{aligned} \boxed{ 0 = \pdv{}{t}\big(n \Expval{Q}\big) + \nabla \cdot \big(n \Expval{Q \vb{v}}\big) - \frac{\vb{F}}{m} \cdot \bigg( n \Expval{\pdv{Q}{\vb{v}}} \bigg) } \end{aligned}$$ If we set $Q = m$, then the mass density $\rho = n \Expval{Q}$, and we find that the **zeroth moment** of the BTE describes conservation of mass, where $\vb{V} \equiv \Expval{\vb{v}} = \int \vb{v} f \dd{\vb{v}}$ is the fluid velocity: $$\begin{aligned} \boxed{ 0 = \pdv{\rho}{t} + \nabla \cdot \big(\rho \vb{V}\big) } \end{aligned}$$
If we instead choose the momentum $Q = m \vb{v}$, we find that the **first moment** of the BTE describes conservation of momentum, where $\hat{P}$ is the [Cauchy stress tensor](/know/concept/cauchy-stress-tensor/): $$\begin{aligned} \boxed{ 0 = \pdv{}{t}\big(\rho \vb{V}\big) + \rho \vb{V} (\nabla \cdot \vb{V}) + \nabla \cdot \hat{P} - n \vb{F} } \end{aligned}$$
Finally, if we choose the kinetic energy $Q = m |\vb{v}|^2 / 2$, we find that the **second moment** gives conservation of energy, where $U$ is the thermal energy density and $\vb{J}$ is the heat flux: $$\begin{aligned} \boxed{ 0 = \pdv{}{t}\bigg(\frac{\rho}{2} |\vb{V}|^2 + U \bigg) + \nabla \cdot \bigg(\frac{\rho}{2} |\vb{V}|^2 \vb{V} + \vb{V} \cdot \hat{P} + U \vb{V} + \vb{J} \bigg) - \vb{F} \cdot \big( n \vb{V} \big) } \end{aligned}$$
## References 1. M. Salewski, A.H. Nielsen, *Plasma physics: lecture notes*, 2021, unpublished.