--- title: "Cartesian coordinates" sort_title: "Cartesian coordinates" date: 2023-06-09 categories: - Mathematics - Physics layout: "concept" --- This article is a supplement to the ones on [orthogonal curvilinear systems](/know/concept/orthogonal-curvilinear-coordinates/), [spherical coordinates](/know/concept/spherical-coordinates/), [polar cylindrical coordinates](/know/concept/polar-cylindrical-coordinates/), and [parabolic cylindrical coordinates](/know/concept/parabolic-cylindrical-coordinates/). The well-known Cartesian coordinate system $$(x, y, z)$$ has trivial **scale factors**: $$\begin{aligned} \boxed{ h_x = h_y = h_z = 1 } \end{aligned}$$ With these, we can use the standard formulae for orthogonal curvilinear coordinates to write out various vector calculus operations. ## Differential elements For line integrals, the tangent vector element $$\dd{\vb{\ell}}$$ for a curve is as follows: $$\begin{aligned} \boxed{ \dd{\vb{\ell}} = \vu{e}_x \dd{x} + \: \vu{e}_y \dd{y} + \: \vu{e}_z \dd{z} } \end{aligned}$$ For surface integrals, the normal vector element $$\dd{\vb{S}}$$ for a surface is given by: $$\begin{aligned} \boxed{ \dd{\vb{S}} = \vu{e}_x \dd{y} \dd{z} + \: \vu{e}_y \dd{x} \dd{z} + \: \vu{e}_z \dd{x} \dd{y} } \end{aligned}$$ And for volume integrals, the infinitesimal volume $$\dd{V}$$ takes the following form: $$\begin{aligned} \boxed{ \dd{V} = \dd{x} \dd{y} \dd{z} } \end{aligned}$$ ## Common operations The basic vector operations (gradient, divergence, curl and Laplacian) are given by: $$\begin{aligned} \boxed{ \nabla f = \vu{e}_x \pdv{f}{x} + \vu{e}_y \pdv{f}{y} + \mathbf{e}_z \pdv{f}{z} } \end{aligned}$$ $$\begin{aligned} \boxed{ \nabla \cdot \vb{V} = \pdv{V_x}{x} + \pdv{V_y}{y} + \pdv{V_z}{z} } \end{aligned}$$ $$\begin{aligned} \boxed{ \begin{aligned} \nabla \times \vb{V} &= \quad \vu{e}_x \bigg( \pdv{V_z}{y} - \pdv{V_y}{z} \bigg) \\ &\quad\: + \vu{e}_y \bigg( \pdv{V_x}{z} - \pdv{V_z}{x} \bigg) \\ &\quad\: + \vu{e}_z \bigg( \pdv{V_y}{x} - \pdv{V_x}{y} \bigg) \end{aligned} } \end{aligned}$$ $$\begin{aligned} \boxed{ \nabla^2 f = \pdvn{2}{f}{x} + \pdvn{2}{f}{y} + \pdvn{2}{f}{z} } \end{aligned}$$ ## Uncommon operations Uncommon operations include: the gradient of a divergence $$\nabla (\nabla \cdot \vb{V})$$, the gradient of a vector $$\nabla \vb{V}$$, the advection of a vector $$(\vb{U} \cdot \nabla) \vb{V}$$ with respect to $$\vb{U}$$, the Laplacian of a vector $$\nabla^2 \vb{V}$$, and the divergence of a 2nd-order tensor $$\nabla \cdot \overline{\overline{\vb{T}}}$$: $$\begin{aligned} \boxed{ \begin{aligned} \nabla (\nabla \cdot \vb{V}) &= \quad \vu{e}_x \bigg( \pdvn{2}{V_x}{x} + \mpdv{V_y}{x}{y} + \mpdv{V_z}{x}{z} \bigg) \\ &\quad\: + \vu{e}_y \bigg( \mpdv{V_x}{y}{x} + \pdvn{2}{V_y}{y} + \mpdv{V_z}{y}{z} \bigg) \\ &\quad\: + \vu{e}_z \bigg( \mpdv{V_x}{z}{x} + \mpdv{V_y}{z}{y} + \pdvn{2}{V_z}{z} \bigg) \end{aligned} } \end{aligned}$$ $$\begin{aligned} \boxed{ \begin{aligned} \nabla \vb{V} &= \quad \vu{e}_x \vu{e}_x \pdv{V_x}{x} + \vu{e}_x \vu{e}_y \pdv{V_y}{x} + \vu{e}_x \vu{e}_z \pdv{V_z}{x} \\ &\quad\: + \vu{e}_y \vu{e}_x \pdv{V_x}{y} + \vu{e}_y \vu{e}_y \pdv{V_y}{y} + \vu{e}_y \vu{e}_z \pdv{V_z}{y} \\ &\quad\: + \vu{e}_z \vu{e}_x \pdv{V_x}{z} + \vu{e}_z \vu{e}_y \pdv{V_y}{z} + \vu{e}_z \vu{e}_z \pdv{V_z}{z} \end{aligned} } \end{aligned}$$ $$\begin{aligned} \boxed{ \begin{aligned} (\vb{U} \cdot \nabla) \vb{V} &= \quad \vu{e}_x \bigg( U_x \pdv{V_x}{x} + U_y \pdv{V_x}{y} + U_z \pdv{V_x}{z} \bigg) \\ &\quad\: + \vu{e}_y \bigg( U_x \pdv{V_y}{x} + U_y \pdv{V_y}{y} + U_z \pdv{V_y}{z} \bigg) \\ &\quad\: + \vu{e}_z \bigg( U_x \pdv{V_z}{x} + U_y \pdv{V_z}{y} + U_z \pdv{V_z}{z} \bigg) \end{aligned} } \end{aligned}$$ $$\begin{aligned} \boxed{ \begin{aligned} \nabla^2 \vb{V} &= \quad \vu{e}_x \bigg( \pdvn{2}{V_x}{x} + \pdvn{2}{V_x}{y} + \pdvn{2}{V_x}{z} \bigg) \\ &\quad\: + \vu{e}_y \bigg( \pdvn{2}{V_y}{x} + \pdvn{2}{V_y}{y} + \pdvn{2}{V_y}{z} \bigg) \\ &\quad\: + \vu{e}_z \bigg( \pdvn{2}{V_z}{x} + \pdvn{2}{V_z}{y} + \pdvn{2}{V_z}{z} \bigg) \end{aligned} } \end{aligned}$$ $$\begin{aligned} \boxed{ \begin{aligned} \nabla \cdot \overline{\overline{\mathbf{T}}} &= \quad \vu{e}_x \bigg( \pdv{T_{xx}}{x} + \pdv{T_{yx}}{y} + \pdv{T_{zx}}{z} \bigg) \\ &\quad\: + \vu{e}_y \bigg( \pdv{T_{xy}}{x} + \pdv{T_{yy}}{y} + \pdv{T_{zy}}{z} \bigg) \\ &\quad\: + \vu{e}_z \bigg( \pdv{T_{xz}}{x} + \pdv{T_{yz}}{y} + \pdv{T_{zz}}{z} \bigg) \end{aligned} } \end{aligned}$$ ## References 1. M.L. Boas, *Mathematical methods in the physical sciences*, 2nd edition, Wiley.