--- title: "CHSH inequality" sort_title: "CHSH inequality" date: 2023-02-05 categories: - Physics - Quantum mechanics - Quantum information layout: "concept" --- The **Clauser-Horne-Shimony-Holt (CHSH) inequality** is an alternative proof of [Bell's theorem](/know/concept/bells-theorem/), which takes a slightly different approach and is more useful in practice. Suppose there is a local hidden variable (LHV) $$\lambda$$ with an unknown probability density $$\rho$$: $$\begin{aligned} \int \rho(\lambda) \dd{\lambda} = 1 \qquad \quad \rho(\lambda) \ge 0 \end{aligned}$$ Given two spin-1/2 particles $$A$$ and $$B$$, measuring their spins along arbitrary directions $$\vec{a}$$ and $$\vec{b}$$ would give each an eigenvalue $$\pm 1$$. We write this as: $$\begin{aligned} A(\vec{a}, \lambda) = \pm 1 \qquad \quad B(\vec{b}, \lambda) = \pm 1 \end{aligned}$$ If $$A$$ and $$B$$ start in an entangled [Bell state](/know/concept/bell-state/), e.g. $$\ket{\Psi^{-}}$$, then we expect a correlation between their measurements results. The product of the outcomes of $$A$$ and $$B$$ is: $$\begin{aligned} \Expval{A_a B_b} \equiv \int \rho(\lambda) \: A(\vec{a}, \lambda) \: B(\vec{b}, \lambda) \dd{\lambda} \end{aligned}$$ So far, we have taken the same path as for proving Bell's inequality, but for the CHSH inequality we must now diverge. ## Deriving the inequality Consider four spin directions, two for $$A$$ called $$\vec{a}_1$$ and $$\vec{a}_2$$, and two for $$B$$ called $$\vec{b}_1$$ and $$\vec{b}_2$$. Let us introduce the following abbreviations: $$\begin{aligned} A_1 \equiv A(\vec{a}_1, \lambda) \qquad \quad A_2 \equiv A(\vec{a}_2, \lambda) \qquad \quad B_1 \equiv B(\vec{b}_1, \lambda) \qquad \quad B_2 \equiv B(\vec{b}_2, \lambda) \end{aligned}$$ From the definition of the expectation value, we know that the difference is given by: $$\begin{aligned} \Expval{A_1 B_1} - \Expval{A_1 B_2} = \int \rho(\lambda) \Big( A_1 B_1 - A_1 B_2 \Big) \dd{\lambda} \end{aligned}$$ We introduce some new terms and rearrange the resulting expression: $$\begin{aligned} \Expval{A_1 B_1} - \Expval{A_1 B_2} &= \int \rho(\lambda) \Big( A_1 B_1 - A_1 B_2 \pm A_1 B_1 A_2 B_2 \mp A_1 B_1 A_2 B_2 \Big) \dd{\lambda} \\ &= \int \rho(\lambda) A_1 B_1 \Big( 1 \pm A_2 B_2 \Big) \dd{\lambda} - \!\int \rho(\lambda) A_1 B_2 \Big( 1 \pm A_2 B_1 \Big) \dd{\lambda} \end{aligned}$$ Taking the absolute value of both sides and invoking the triangle inequality then yields: $$\begin{aligned} \Big| \Expval{A_1 B_1} - \Expval{A_1 B_2} \Big| &= \bigg|\! \int \rho(\lambda) A_1 B_1 \Big( 1 \pm A_2 B_2 \Big) \dd{\lambda} - \!\int \rho(\lambda) A_1 B_2 \Big( 1 \pm A_2 B_1 \Big) \dd{\lambda} \!\bigg| \\ &\le \bigg|\! \int \rho(\lambda) A_1 B_1 \Big( 1 \pm A_2 B_2 \Big) \dd{\lambda} \!\bigg| + \bigg|\! \int \rho(\lambda) A_1 B_2 \Big( 1 \pm A_2 B_1 \Big) \dd{\lambda} \!\bigg| \end{aligned}$$ Using the fact that the product of the spin eigenvalues of $$A$$ and $$B$$ is always either $$-1$$ or $$+1$$ for all directions, we can reduce this to: $$\begin{aligned} \Big| \Expval{A_1 B_1} - \Expval{A_1 B_2} \Big| &\le \int \rho(\lambda) \Big| A_1 B_1 \Big| \Big( 1 \pm A_2 B_2 \Big) \dd{\lambda} + \!\int \rho(\lambda) \Big| A_1 B_2 \Big| \Big( 1 \pm A_2 B_1 \Big) \dd{\lambda} \\ &\le \int \rho(\lambda) \Big( 1 \pm A_2 B_2 \Big) \dd{\lambda} + \!\int \rho(\lambda) \Big( 1 \pm A_2 B_1 \Big) \dd{\lambda} \end{aligned}$$ Evaluating these integrals gives us the following inequality, which holds for both choices of $$\pm$$: $$\begin{aligned} \Big| \Expval{A_1 B_1} - \Expval{A_1 B_2} \Big| &\le 2 \pm \Expval{A_2 B_2} \pm \Expval{A_2 B_1} \end{aligned}$$ We should choose the signs such that the right-hand side is as small as possible, that is: $$\begin{aligned} \Big| \Expval{A_1 B_1} - \Expval{A_1 B_2} \Big| &\le 2 \pm \Big( \Expval{A_2 B_2} + \Expval{A_2 B_1} \Big) \\ &\le 2 - \Big| \Expval{A_2 B_2} + \Expval{A_2 B_1} \Big| \end{aligned}$$ Rearranging this and once again using the triangle inequality, we get the CHSH inequality: $$\begin{aligned} 2 &\ge \Big| \Expval{A_1 B_1} - \Expval{A_1 B_2} \Big| + \Big| \Expval{A_2 B_2} + \Expval{A_2 B_1} \Big| \\ &\ge \Big| \Expval{A_1 B_1} - \Expval{A_1 B_2} + \Expval{A_2 B_2} + \Expval{A_2 B_1} \Big| \end{aligned}$$ The quantity on the right-hand side is sometimes called the **CHSH quantity** $$S$$, and measures the correlation between the spins of $$A$$ and $$B$$: $$\begin{aligned} \boxed{ S \equiv \Expval{A_2 B_1} + \Expval{A_2 B_2} + \Expval{A_1 B_1} - \Expval{A_1 B_2} } \end{aligned}$$ The CHSH inequality places an upper bound on the magnitude of $$S$$ for LHV-based theories: $$\begin{aligned} \boxed{ |S| \le 2 } \end{aligned}$$ ## Tsirelson's bound Quantum physics can violate the CHSH inequality, but by how much? Consider the following two-particle operator, whose expectation value is the CHSH quantity, i.e. $$S = \expval{\hat{S}}$$: $$\begin{aligned} \hat{S} = \hat{A}_2 \otimes \hat{B}_1 + \hat{A}_2 \otimes \hat{B}_2 + \hat{A}_1 \otimes \hat{B}_1 - \hat{A}_1 \otimes \hat{B}_2 \end{aligned}$$ Where $$\otimes$$ is the tensor product, and e.g. $$\hat{A}_1$$ is the Pauli matrix for the $$\vec{a}_1$$-direction. The square of this operator is then given by: $$\begin{aligned} \hat{S}^2 = \quad &\hat{A}_2^2 \otimes \hat{B}_1^2 + \hat{A}_2^2 \otimes \hat{B}_1 \hat{B}_2 + \hat{A}_2 \hat{A}_1 \otimes \hat{B}_1^2 - \hat{A}_2 \hat{A}_1 \otimes \hat{B}_1 \hat{B}_2 \\ + &\hat{A}_2^2 \otimes \hat{B}_2 \hat{B}_1 + \hat{A}_2^2 \otimes \hat{B}_2^2 + \hat{A}_2 \hat{A}_1 \otimes \hat{B}_2 \hat{B}_1 - \hat{A}_2 \hat{A}_1 \otimes \hat{B}_2^2 \\ + &\hat{A}_1 \hat{A}_2 \otimes \hat{B}_1^2 + \hat{A}_1 \hat{A}_2 \otimes \hat{B}_1 \hat{B}_2 + \hat{A}_1^2 \otimes \hat{B}_1^2 - \hat{A}_1^2 \otimes \hat{B}_1 \hat{B}_2 \\ - &\hat{A}_1 \hat{A}_2 \otimes \hat{B}_2 \hat{B}_1 - \hat{A}_1 \hat{A}_2 \otimes \hat{B}_2^2 - \hat{A}_1^2 \otimes \hat{B}_2 \hat{B}_1 + \hat{A}_1^2 \otimes \hat{B}_2^2 \\ = \quad &\hat{A}_2^2 \otimes \hat{B}_1^2 + \hat{A}_2^2 \otimes \hat{B}_2^2 + \hat{A}_1^2 \otimes \hat{B}_1^2 + \hat{A}_1^2 \otimes \hat{B}_2^2 \\ + &\hat{A}_2^2 \otimes \acomm{\hat{B}_1}{\hat{B}_2} - \hat{A}_1^2 \otimes \acomm{\hat{B}_1}{\hat{B}_2} + \acomm{\hat{A}_1}{\hat{A}_2} \otimes \hat{B}_1^2 - \acomm{\hat{A}_1}{\hat{A}_2} \otimes \hat{B}_2^2 \\ + &\hat{A}_1 \hat{A}_2 \otimes \comm{\hat{B}_1}{\hat{B}_2} - \hat{A}_2 \hat{A}_1 \otimes \comm{\hat{B}_1}{\hat{B}_2} \end{aligned}$$ Spin operators are unitary, so their square is the identity, e.g. $$\hat{A}_1^2 = \hat{I}$$. Therefore $$\hat{S}^2$$ reduces to: $$\begin{aligned} \hat{S}^2 &= 4 \: (\hat{I} \otimes \hat{I}) + \comm{\hat{A}_1}{\hat{A}_2} \otimes \comm{\hat{B}_1}{\hat{B}_2} \end{aligned}$$ The *norm* $$\norm{\hat{S}^2}$$ of this operator is the largest possible expectation value $$\expval{\hat{S}^2}$$, which is the same as its largest eigenvalue. It is given by: $$\begin{aligned} \Norm{\hat{S}^2} &= 4 + \Norm{\comm{\hat{A}_1}{\hat{A}_2} \otimes \comm{\hat{B}_1}{\hat{B}_2}} \\ &\le 4 + \Norm{\comm{\hat{A}_1}{\hat{A}_2}} \Norm{\comm{\hat{B}_1}{\hat{B}_2}} \end{aligned}$$ We find a bound for the norm of the commutators by using the triangle inequality, such that: $$\begin{aligned} \Norm{\comm{\hat{A}_1}{\hat{A}_2}} = \Norm{\hat{A}_1 \hat{A}_2 - \hat{A}_2 \hat{A}_1} \le \Norm{\hat{A}_1 \hat{A}_2} + \Norm{\hat{A}_2 \hat{A}_1} \le 2 \Norm{\hat{A}_1 \hat{A}_2} \le 2 \end{aligned}$$ And $$\norm{\comm{\hat{B}_1}{\hat{B}_2}} \le 2$$ for the same reason. The norm is the largest eigenvalue, therefore: $$\begin{aligned} \Norm{\hat{S}^2} \le 4 + 2 \cdot 2 = 8 \quad \implies \quad \Norm{\hat{S}} \le \sqrt{8} = 2 \sqrt{2} \end{aligned}$$ We thus arrive at **Tsirelson's bound**, which states that quantum mechanics can violate the CHSH inequality by a factor of $$\sqrt{2}$$: $$\begin{aligned} \boxed{ |S| \le 2 \sqrt{2} } \end{aligned}$$ Importantly, this is a *tight* bound, meaning that there exist certain spin measurement directions for which Tsirelson's bound becomes an equality, for example: $$\begin{aligned} \hat{A}_1 = \hat{\sigma}_z \qquad \hat{A}_2 = \hat{\sigma}_x \qquad \hat{B}_1 = \frac{\hat{\sigma}_z + \hat{\sigma}_x}{\sqrt{2}} \qquad \hat{B}_2 = \frac{\hat{\sigma}_z - \hat{\sigma}_x}{\sqrt{2}} \end{aligned}$$ Fundamental quantum mechanics says that $$\Expval{A_a B_b} = - \vec{a} \cdot \vec{b}$$, so $$S = 2 \sqrt{2}$$ in this case. ## References 1. D.J. Griffiths, D.F. Schroeter, *Introduction to quantum mechanics*, 3rd edition, Cambridge. 2. J.B. Brask, *Quantum information: lecture notes*, 2021, unpublished.