--- title: "Dielectric function" sort_title: "Dielectric function" date: 2022-01-24 categories: - Physics - Electromagnetism - Quantum mechanics layout: "concept" --- The **dielectric function** or **relative permittivity** $$\varepsilon_r$$ is a measure of how strongly a given medium counteracts [electric fields](/know/concept/electric-field/) compared to a vacuum. Let $$\vb{D}$$ be the applied external field, and $$\vb{E}$$ the effective field inside the material, then $$\varepsilon_r$$ is defined such that: $$\begin{aligned} \boxed{ \vb{D} = \varepsilon_0 \varepsilon_r \vb{E} } \end{aligned}$$ If $$\varepsilon_r$$ is large, then $$\vb{D}$$ is strongly suppressed, because the material's electrons and nuclei move to create an opposing field. In order for $$\varepsilon_r$$ to be well-defined, we only consider *linear* media, where the induced polarization $$\vb{P}$$ is proportional to $$\vb{E}$$. We would like to find an alternative definition of $$\varepsilon_r$$. Consider that the usual electric fields $$\vb{E}$$, $$\vb{D}$$, and $$\vb{P}$$ can each be written as the gradient of an electrostatic potential like so, where $$\Phi_\mathrm{tot}$$, $$\Phi_\mathrm{ext}$$ and $$\Phi_\mathrm{ind}$$ are the total, external and induced potentials, respectively: $$\begin{aligned} \vb{E} = -\nabla \Phi_\mathrm{tot} \qquad \qquad \vb{D} = - \varepsilon_0 \nabla \Phi_\mathrm{ext} \qquad \qquad \vb{P} = \varepsilon_0 \nabla \Phi_\mathrm{ind} \end{aligned}$$ Such that $$\Phi_\mathrm{tot} = \Phi_\mathrm{ext} + \Phi_\mathrm{ind}$$. Inserting this into $$\vb{D} = \varepsilon_0 \varepsilon_r \vb{E}$$ then suggests defining: $$\begin{aligned} \boxed{ \varepsilon_r \equiv \frac{\Phi_\mathrm{ext}}{\Phi_\mathrm{tot}} } \end{aligned}$$ In practice, a common way to calculate $$\varepsilon_r$$ is from the induced charge density $$\rho_\mathrm{ind}$$, i.e. the offset caused by the material's particles responding to the field. Starting from [Gauss' law](/know/concept/maxwells-equations/) for $$\vb{P}$$: $$\begin{aligned} \nabla \cdot \vb{P} = \varepsilon_0 \nabla^2 \Phi_\mathrm{ind}(\vb{r}) = - \rho_\mathrm{ind}(\vb{r}) \end{aligned}$$ This is Poisson's equation, which has a well-known solution via [Fourier transformation](/know/concept/fourier-transform/): $$\begin{aligned} \Phi_\mathrm{ind}(\vb{q}) = \frac{\rho_\mathrm{ind}(\vb{q})}{\varepsilon_0 |\vb{q}|^2} \equiv V(\vb{q}) \: \rho_\mathrm{ind}(\vb{q}) \end{aligned}$$ Where $$V(\vb{q})$$ represents Coulomb interactions, and $$V(0) \equiv 0$$ to ensure overall neutrality: $$\begin{aligned} V(\vb{q}) \equiv \frac{1}{\varepsilon_0 |\vb{q}|^2} \qquad \implies \qquad V(\vb{r} - \vb{r}') = \frac{1}{4 \pi \varepsilon_0 |\vb{r} - \vb{r}'|} \end{aligned}$$ Note that the [convolution theorem](/know/concept/convolution-theorem/) then gives us the solution $$\Phi_\mathrm{ind}$$ in the $$\vb{r}$$-domain: $$\begin{aligned} \Phi_\mathrm{ind}(\vb{r}) = (V * \rho_\mathrm{ind})(\vb{r}) = \int_{-\infty}^\infty V(\vb{r} - \vb{r}') \: \rho_\mathrm{ind}(\vb{r}') \dd{\vb{r}'} \end{aligned}$$ To proceed to calculate $$\varepsilon_r$$ from $$\rho_\mathrm{ind}$$, one needs an expression for $$\rho_\mathrm{ind}$$ that is proportional to $$\Phi_\mathrm{tot}$$ or $$\Phi_\mathrm{ext}$$ or some linear combination thereof. Such an expression must exist for a linear medium, but the details depend on the physics being considered and are thus beyond our current scope; we will just show the general form of $$\varepsilon_r$$ once such an expression has been found. Suppose we know that $$\rho_\mathrm{ind} = c_\mathrm{ext} \Phi_\mathrm{ext}$$ for some factor $$c_\mathrm{ext}$$, which may depend on $$\vb{q}$$. Then, since $$\Phi_\mathrm{tot} = \Phi_\mathrm{ext} \!+\! \Phi_\mathrm{ind}$$, we find in the $$\vb{q}$$-domain: $$\begin{aligned} \Phi_\mathrm{tot} = (1 + c_\mathrm{ext} V) \Phi_\mathrm{ext} \quad \implies \quad \boxed{ \varepsilon_r(\vb{q}) = \frac{1}{1 + c_\mathrm{ext}(\vb{q}) V(\vb{q})} } \end{aligned}$$ Likewise, suppose we can instead show that $$\rho_\mathrm{ind} = c_\mathrm{tot} \Phi_\mathrm{tot}$$ for some quantity $$c_\mathrm{tot}$$, then: $$\begin{aligned} \Phi_\mathrm{ext} = (1 - c_\mathrm{tot} V) \Phi_\mathrm{tot} \quad \implies \quad \boxed{ \varepsilon_r(\vb{q}) = 1 - c_\mathrm{tot}(\vb{q}) V(\vb{q}) } \end{aligned}$$ And in the unlikely event that an expression of the form $$\rho_\mathrm{ind} = c_\mathrm{ext} \Phi_\mathrm{ext} \!+\! c_\mathrm{tot} \Phi_\mathrm{tot}$$ is found: $$\begin{aligned} (1 - c_\mathrm{tot} V) \Phi_\mathrm{tot} = (1 + c_\mathrm{ext} V) \Phi_\mathrm{ext} \quad \implies \quad \varepsilon_r(\vb{q}) = \frac{1 - c_\mathrm{tot}(\vb{q}) V(\vb{q})}{1 + c_\mathrm{ext}(\vb{q}) V(\vb{q})} \end{aligned}$$ ## References 1. H. Bruus, K. Flensberg, *Many-body quantum theory in condensed matter physics*, 2016, Oxford. 2. M. Fox, *Optical properties of solids*, 2nd edition, Oxford.