--- title: "Dirac notation" sort_title: "Dirac notation" date: 2021-02-22 categories: - Quantum mechanics - Physics layout: "concept" --- **Dirac notation** enables us to do calculations in a general [Hilbert space](/know/concept/hilbert-space/) without needing to worry about the space's representation. It is the *lingua franca* of quantum mechanics. In Dirac notation there are **kets** $$\ket{V}$$ from the Hilbert space $$\mathbb{H}$$ and **bras** $$\bra{V}$$ from its dual space $$\mathbb{H}'$$. Crucially, the bras and kets are from different Hilbert spaces and therefore cannot be added, but every bra has a corresponding ket and vice versa. Bras and kets can be combined in two ways: the **inner product** $$\inprod{V}{W}$$, which returns a scalar, and the **outer product** $$\ket{V} \bra{W}$$, which returns a linear operator that maps kets $$\ket{V}$$ to other kets $$\ket{V'}$$. Recall that by definition the Hilbert inner product must satisfy: $$\begin{aligned} \inprod{V}{W} = \inprod{W}{V}^* \end{aligned}$$ So far, nothing has been said about the actual representation of bras or kets. If we represent kets as $$N$$-dimensional columns vectors, the corresponding bras are given by the kets' adjoints, i.e. their transpose conjugates: $$\begin{aligned} \ket{V} = \begin{bmatrix} v_1 \\ \vdots \\ v_N \end{bmatrix} \quad \implies \quad \bra{V} = \begin{bmatrix} v_1^* & \cdots & v_N^* \end{bmatrix} \end{aligned}$$ The inner product $$\inprod{V}{W}$$ is then just the familiar dot product $$V \cdot W$$: $$\begin{gathered} \inprod{V}{W} = \begin{bmatrix} v_1^* & \cdots & v_N^* \end{bmatrix} \cdot \begin{bmatrix} w_1 \\ \vdots \\ w_N \end{bmatrix} = v_1^* w_1 + ... + v_N^* w_N \end{gathered}$$ Meanwhile, the outer product $$\ket{V} \bra{W}$$ creates an $$N \cross N$$ matrix, which can be thought of as applying an operation to any vector it multiplies: $$\begin{gathered} \ket{V} \bra{W} = \begin{bmatrix} v_1 \\ \vdots \\ v_N \end{bmatrix} \cdot \begin{bmatrix} w_1^* & \cdots & w_N^* \end{bmatrix} = \begin{bmatrix} v_1 w_1^* & \cdots & v_1 w_N^* \\ \vdots & \ddots & \vdots \\ v_N w_1^* & \cdots & v_N w_N^* \end{bmatrix} \end{gathered}$$ If the kets are instead represented by continuous functions $$f(x)$$ of $$x \in [a, b]$$, then the bras are *functionals* $$F[u(x)]$$ that take an arbitrary function $$u(x)$$ as an argument and return a scalar: $$\begin{aligned} \ket{f} = f(x) \quad \implies \quad \bra{f} = F[u(x)] = \int_a^b f^*(x) \: u(x) \dd{x} \end{aligned}$$ Consequently, the inner product is simply the following familiar integral: $$\begin{gathered} \inprod{f}{g} = F[g(x)] = \int_a^b f^*(x) \: g(x) \dd{x} \end{gathered}$$ However, the outer product is then rather abstract: a continuous analogue of a matrix: $$\begin{gathered} \ket{f} \bra{g} = f(x) \: G[u(x)] = f(x) \int_a^b g^*(\xi) \: u(\xi) \dd{\xi} \end{gathered}$$ This maybe makes more sense if we surround it by a bra $$\bra{u}$$ and a ket $$\ket{w}$$ and rearrange: $$\begin{aligned} \bra{u} \!\Big(\!\ket{f} \bra{g}\!\Big)\! \ket{w} &= U\big[f(x) \: G[w(x)]\big] = U\Big[ f(x) \int_a^b g^*(\xi) \: w(\xi) \dd{\xi} \Big] \\ &= \int_a^b u^*(x) \: f(x) \: \Big(\int_a^b g^*(\xi) \: w(\xi) \dd{\xi} \Big) \dd{x} \\ &= \Big( \int_a^b u^*(x) \: f(x) \dd{x} \Big) \Big( \int_a^b g^*(\xi) \: w(\xi) \dd{\xi} \Big) \\ &= \inprod{u}{f} \inprod{g}{w} \end{aligned}$$ ## References 1. R. Shankar, *Principles of quantum mechanics*, 2nd edition, Springer.