--- title: "Dyson equation" sort_title: "Dyson equation" date: 2021-11-01 categories: - Physics - Quantum mechanics layout: "concept" --- Consider the time-dependent Schrödinger equation, describing a wavefunction $$\Psi_0(\vb{r}, t)$$: $$\begin{aligned} i \hbar \pdv{}{t}\Psi_0(\vb{r}, t) = \hat{H}_0(\vb{r}) \: \Psi_0(\vb{r}, t) \end{aligned}$$ By definition, this equation's [fundamental solution](/know/concept/fundamental-solution/) $$G_0(\vb{r}, t; \vb{r}', t')$$ satisfies the following: $$\begin{aligned} \Big( i \hbar \pdv{}{t}- \hat{H}_0(\vb{r}) \Big) G_0(\vb{r}, t; \vb{r}', t') = \delta(\vb{r} - \vb{r}') \: \delta(t - t') \end{aligned}$$ From this, we define the inverse $$\hat{G}{}_0^{-1}(\vb{r}, t)$$ as follows, so that $$\hat{G}{}_0^{-1} G_0 = \delta(\vb{r} \!-\! \vb{r}') \: \delta(t \!-\! t')$$: $$\begin{aligned} \hat{G}{}_0^{-1}(\vb{r}, t) &\equiv i \hbar \pdv{}{t}- \hat{H}_0(\vb{r}) \end{aligned}$$ Note that $$\hat{G}{}_0^{-1}$$ is an operator, while $$G_0$$ is a function. For the sake of consistency, we thus define the operator $$\hat{G}_0(\vb{r}, t)$$ as a multiplication by $$G_0$$ and integration over $$\vb{r}'$$ and $$t'$$: $$\begin{aligned} \hat{G}_0(\vb{r}, t) \: f \equiv \iint_{-\infty}^\infty G_0(\vb{r}, t; \vb{r}', t') \: f(\vb{r}', t') \: \dd{\vb{r}}' \dd{t'} \end{aligned}$$ For an arbitrary function $$f(\vb{r}, t)$$, so that $$\hat{G}{}_0^{-1} \hat{G}_0 = \hat{G}_0 \hat{G}{}_0^{-1} = 1$$. Moving on, the Schrödinger equation can be rewritten like so, using $$\hat{G}{}_0^{-1}$$: $$\begin{aligned} \hat{G}{}_0^{-1}(\vb{r}, t) \: \Psi_0(\vb{r}, t) = 0 \end{aligned}$$ Let us assume that $$\hat{H}_0$$ is simple, such that $$G_0$$ and $$\hat{G}{}_0^{-1}$$ can be found without issues by solving the defining equation above. Suppose we now add a more complicated and possibly time-dependent term $$\hat{H}_1(\vb{r}, t)$$, in which case the corresponding fundamental solution $$G(\vb{r}, \vb{r}', t, t')$$ satisfies: $$\begin{aligned} \delta(\vb{r} - \vb{r}') \: \delta(t - t') &= \Big( i \hbar \pdv{}{t}- \hat{H}_0(\vb{r}) - \hat{H}_1(\vb{r}, t) \Big) G(\vb{r}, t; \vb{r}', t') \\ &= \Big( \hat{G}{}_0^{-1}(\vb{r}, t) - \hat{H}_1(\vb{r}, t) \Big) G(\vb{r}, t; \vb{r}', t') \end{aligned}$$ This equation is typically too complicated to solve, so we would like an easier way to calculate this new $$G$$. The perturbed wavefunction $$\Psi(\vb{r}, t)$$ satisfies the Schrödinger equation: $$\begin{aligned} \Big( \hat{G}{}_0^{-1}(\vb{r}, t) - \hat{H}_1(\vb{r}, t) \Big) \Psi(\vb{r}, t) = 0 \end{aligned}$$ We know that $$\hat{G}{}_0^{-1} \Psi_0 = 0$$, which we put on the right, and then we apply $$\hat{G}_0$$ in front: $$\begin{aligned} \hat{G}_0^{-1} \Psi - \hat{H}_1 \Psi = \hat{G}_0^{-1} \Psi_0 \quad \implies \quad \Psi - \hat{G}_0 \hat{H}_1 \Psi &= \Psi_0 \end{aligned}$$ This equation is recursive, so we iteratively insert it into itself. Note that the resulting equations are the same as those from [time-dependent perturbation theory](/know/concept/time-dependent-perturbation-theory/): $$\begin{aligned} \Psi &= \Psi_0 + \hat{G}_0 \hat{H}_1 \Psi \\ &= \Psi_0 + \hat{G}_0 \hat{H}_1 \Psi_0 + \hat{G}_0 \hat{H}_1 \hat{G}_0 \hat{H}_1 \Psi \\ &= \Psi_0 + \hat{G}_0 \hat{H}_1 \Psi_0 + \hat{G}_0 \hat{H}_1 \hat{G}_0 \hat{H}_1 \Psi_0 + \hat{G}_0 \hat{H}_1 \hat{G}_0 \hat{H}_1 \hat{G}_0 \hat{H}_1 \Psi_0 + \: ... \\ &= \Psi_0 + \big( \hat{G}_0 + \hat{G}_0 \hat{H}_1 \hat{G}_0 + \hat{G}_0 \hat{H}_1 \hat{G}_0 \hat{H}_1 \hat{G}_0 + \: ... \big) \hat{H}_1 \Psi_0 \end{aligned}$$ The parenthesized expression clearly has the same recursive pattern, so we denote it by $$\hat{G}$$ and write the so-called **Dyson equation**: $$\begin{aligned} \boxed{ \hat{G} = \hat{G}_0 + \hat{G}_0 \hat{H}_1 \hat{G} } \end{aligned}$$ Such an iterative scheme is excellent for approximating $$\hat{G}(\vb{r}, t)$$. Once a satisfactory accuracy is obtained, the perturbed wavefunction $$\Psi$$ can be calculated from: $$\begin{aligned} \boxed{ \Psi = \Psi_0 + \hat{G} \hat{H}_1 \Psi_0 } \end{aligned}$$ This relation is equivalent to the Schrödinger equation. So now we have the operator $$\hat{G}(\vb{r}, t)$$, but what about the fundamental solution function $$G(\vb{r}, t; \vb{r}', t')$$? Let us take its definition, multiply it by an arbitrary $$f(\vb{r}, t)$$, and integrate over $$G$$'s second argument pair: $$\begin{aligned} \iint \big( \hat{G}{}_0^{-1} \!-\! \hat{H}_1 \big) G(\vb{r}', t') \: f(\vb{r}', t') \dd{\vb{r}'} \dd{t'} = \iint \delta(\vb{r} \!-\! \vb{r}') \: \delta(t \!-\! t') \: f(\vb{r}', t') \dd{\vb{r}'} \dd{t'} = f \end{aligned}$$ Where we have hidden the arguments $$(\vb{r}, t)$$ for brevity. We now apply $$\hat{G}_0(\vb{r}, t)$$ to this equation (which contains an integral over $$t''$$ independent of $$t'$$): $$\begin{aligned} \hat{G}_0 f &= \big( \hat{G}_0 \hat{G}{}_0^{-1} - \hat{G}_0 \hat{H}_1 \big) \iint_{-\infty}^\infty G(\vb{r}', t') \: f(\vb{r}', t') \dd{\vb{r}'} \dd{t'} \\ &= \big( 1 - \hat{G}_0 \hat{H}_1 \big) \iint_{-\infty}^\infty G(\vb{r}', t') \: f(\vb{r}', t') \dd{\vb{r}'} \dd{t'} \end{aligned}$$ Here, the shape of Dyson's equation is clearly recognizable, so we conclude that, as expected, the operator $$\hat{G}$$ is defined as multiplication by the function $$G$$ followed by integration: $$\begin{aligned} \hat{G}(\vb{r}, t) \: f(\vb{r}, t) \equiv \iint_{-\infty}^\infty G(\vb{r}, t; \vb{r}', t') \: f(\vb{r}', t') \dd{\vb{r}}' \dd{t'} \end{aligned}$$ ## References 1. H. Bruus, K. Flensberg, *Many-body quantum theory in condensed matter physics*, 2016, Oxford.