--- title: "Electric dipole approximation" date: 2021-09-14 categories: - Physics - Quantum mechanics - Optics - Electromagnetism - Perturbation layout: "concept" --- Suppose that an [electromagnetic wave](/know/concept/electromagnetic-wave-equation/) is travelling through an atom, and affecting the electrons. The general Hamiltonian of an electron in such a wave is given by: $$\begin{aligned} \hat{H} &= \frac{(\vu{P} - q \vb{A})^2}{2 m} + q \varphi \\ &= \frac{\vu{P}{}^2}{2 m} - \frac{q}{2 m} (\vb{A} \cdot \vu{P} + \vu{P} \cdot \vb{A}) + \frac{q^2 \vb{A}^2}{2m} + q \varphi \end{aligned}$$ With charge $q = - e$, canonical momentum operator $\vu{P} = - i \hbar \nabla$, and magnetic vector potential $\vb{A}(\vb{x}, t)$. We reduce this by fixing the Coulomb gauge $\nabla \cdot \vb{A} = 0$, so that $\vb{A} \cdot \vu{P} = \vu{P} \cdot \vb{A}$: $$\begin{aligned} \comm{\vb{A}}{\vu{P}} \psi &= -i \hbar \vb{A} \cdot (\nabla \psi) + i \hbar \nabla \cdot (\vb{A} \psi) \\ &= i \hbar (\nabla \cdot \vb{A}) \psi = 0 \end{aligned}$$ Where $\psi$ is an arbitrary test function. Assuming $\vb{A}$ is so small that $\vb{A}{}^2$ is negligible, we split $\hat{H}$ as follows, where $\hat{H}_1$ can be regarded as a perturbation to $\hat{H}_0$: $$\begin{aligned} \hat{H} = \hat{H}_0 + \hat{H}_1 \qquad \quad \hat{H}_0 \equiv \frac{\vu{P}{}^2}{2 m} + q \varphi \qquad \quad \hat{H}_1 \equiv - \frac{q}{m} \vu{P} \cdot \vb{A} \end{aligned}$$ In an electromagnetic wave, $\vb{A}$ is oscillating sinusoidally in time and space: $$\begin{aligned} \vb{A}(\vb{x}, t) = \vb{A}_0 \sin(\vb{k} \cdot \vb{x} - \omega t) \end{aligned}$$ Mathematically, it is more convenient to represent this with a complex exponential, whose real part should be taken at the end of the calculation: $$\begin{aligned} \vb{A}(\vb{x}, t) = - i \vb{A}_0 \exp(i \vb{k} \cdot \vb{x} - i \omega t) \end{aligned}$$ The corresponding perturbative [electric field](/know/concept/electric-field/) $\vb{E}$ is then given by: $$\begin{aligned} \vb{E}(\vb{x}, t) = - \pdv{\vb{A}}{t} = \vb{E}_0 \exp(i \vb{k} \cdot \vb{x} - i \omega t) \end{aligned}$$ Where $\vb{E}_0 = \omega \vb{A}_0$. Let us restrict ourselves to visible light, whose wavelength $2 \pi / |\vb{k}| \sim 10^{-6} \:\mathrm{m}$. Meanwhile, an atomic orbital is several Bohr $\sim 10^{-10} \:\mathrm{m}$, so $\vb{k} \cdot \vb{x}$ is negligible: $$\begin{aligned} \boxed{ \vb{E}(\vb{x}, t) \approx \vb{E}_0 \exp(- i \omega t) } \end{aligned}$$ This is the **electric dipole approximation**: we ignore all spatial variation of $\vb{E}$, and only consider its temporal oscillation. Also, since we have not used the word "photon", we are implicitly treating the radiation classically, and the electron quantum-mechanically. Next, we want to rewrite $\hat{H}_1$ to use the electric field $\vb{E}$ instead of the potential $\vb{A}$. To do so, we use that $\vu{P} = m \: \idv{\vu{x}}{t}$ and evaluate this in the [interaction picture](/know/concept/interaction-picture/): $$\begin{aligned} \vu{P} = m \idv{\vu{x}}{t} = m \frac{i}{\hbar} \comm{\hat{H}_0}{\vu{x}} = m \frac{i}{\hbar} (\hat{H}_0 \vu{x} - \vu{x} \hat{H}_0) \end{aligned}$$ Taking the off-diagonal inner product with the two-level system's states $\Ket{1}$ and $\Ket{2}$ gives: $$\begin{aligned} \matrixel{2}{\vu{P}}{1} = m \frac{i}{\hbar} \matrixel{2}{\hat{H}_0 \vu{x} - \vu{x} \hat{H}_0}{1} = m i \omega_0 \matrixel{2}{\vu{x}}{1} \end{aligned}$$ Therefore, $\vu{P} / m = i \omega_0 \vu{x}$, where $\omega_0 \equiv (E_2 \!-\! E_1) / \hbar$ is the resonance of the energy gap, close to which we assume that $\vb{A}$ and $\vb{E}$ are oscillating, i.e. $\omega \approx \omega_0$. We thus get: $$\begin{aligned} \hat{H}_1(t) &= - \frac{q}{m} \vu{P} \cdot \vb{A} = - (- i i) q \omega_0 \vu{x} \cdot \vb{A}_0 \exp(- i \omega t) \\ &\approx - q \vu{x} \cdot \vb{E}_0 \exp(- i \omega t) = - \vu{d} \cdot \vb{E}_0 \exp(- i \omega t) \end{aligned}$$ Where $\vu{d} \equiv q \vu{x} = - e \vu{x}$ is the **transition dipole moment operator** of the electron, hence the name **electric dipole approximation**. Finally, we take the real part, yielding: $$\begin{aligned} \boxed{ \hat{H}_1(t) = - \vu{d} \cdot \vb{E}(t) = - q \vu{x} \cdot \vb{E}_0 \cos(\omega t) } \end{aligned}$$ If this approximation is too rough, $\vb{E}$ can always be Taylor-expanded in $(i \vb{k} \cdot \vb{x})$: $$\begin{aligned} \vb{E}(\vb{x}, t) = \vb{E}_0 \Big( 1 + (i \vb{k} \cdot \vb{x}) + \frac{1}{2} (i \vb{k} \cdot \vb{x})^2 + \: ... \Big) \exp(- i \omega t) \end{aligned}$$ Taking the real part then yields the following series of higher-order correction terms: $$\begin{aligned} \vb{E}(\vb{x}, t) = \vb{E}_0 \Big( \cos(\omega t) + (\vb{k} \cdot \vb{x}) \sin(\omega t) - \frac{1}{2} (\vb{k} \cdot \vb{x})^2 \cos(\omega t) + \: ... \Big) \end{aligned}$$ ## References 1. M. Fox, *Optical properties of solids*, 2nd edition, Oxford. 2. D.J. Griffiths, D.F. Schroeter, *Introduction to quantum mechanics*, 3rd edition, Cambridge.