--- title: "Fabry-Pérot cavity" date: 2021-09-18 categories: - Physics - Optics - Laser theory layout: "concept" --- In its simplest form, a **Fabry-Pérot cavity** is a region of light-transmitting medium surrounded by two mirrors, which may transmit some of the incoming light. Such a setup can be used as e.g. an interferometer or a laser cavity. Below, we calculate its quasinormal modes in 1D. We divide the $x$-axis into three domains: left $L$, center $C$, and right $R$. The cavity $C$ has length $\ell$ and is centered on $x = 0$. Let $n_L$, $n_C$ and $n_R$ be the respective domains' refractive indices: ## Microscopic cavity In its simplest "microscopic" form, the reflection at the boundaries is simply caused by the index differences there. Consider this ansatz for the [electric field](/know/concept/electric-field/) $E_m(x)$, where $m$ is the mode: $$\begin{aligned} E_m(x) = \begin{cases} A_1 e^{- i k_m n_L x} & \mathrm{for}\; x < -\ell/2 \\ A_2 e^{- i k_m n_C x} + A_3 e^{i k_m n_C x} & \mathrm{for}\; \!-\!\ell/2 < x < \ell/2 \\ A_4 e^{i k_m n_R x} & \mathrm{for}\; x > \ell/2 \end{cases} \end{aligned}$$ The goal is to find the modes' wavenumbers $k_m$. First, we demand that $E_m$ and its derivative $\idv{E_m}{x}$ are continuous at the boundaries $x = \pm \ell/2$: $$\begin{aligned} A_1 e^{i k_m n_L \ell/2} &= A_2 e^{i k_m n_C \ell/2} + A_3 e^{- i k_m n_C \ell/2} \\ A_4 e^{i k_m n_R \ell/2} &= A_2 e^{- i k_m n_C \ell/2} + A_3 e^{i k_m n_C \ell/2} \end{aligned}$$ $$\begin{aligned} - i k_m n_L A_1 e^{i k_m n_L \ell/2} &= - i k_m n_C A_2 e^{i k_m n_C \ell/2} + i k_m n_C A_3 e^{- i k_m n_C \ell/2} \\ i k_m n_R A_4 e^{i k_m n_R \ell/2} &= - i k_m n_C A_2 e^{- i k_m n_C \ell/2} + i k_m n_C A_3 e^{i k_m n_C \ell/2} \end{aligned}$$ Rearranging the four equations above yields the following linear system: $$\begin{aligned} 0 &= A_1 - A_2 e^{i k_m (n_C - n_L) \ell/2} - A_3 e^{- i k_m (n_C + n_L) \ell/2} \\ 0 &= A_2 e^{- i k_m (n_C + n_R) \ell/2} + A_3 e^{i k_m (n_C - n_R) \ell/2} - A_4 \\ 0 &= n_L A_1 + n_C \big( A_3 e^{- i k_m (n_C + n_L) \ell/2} - A_2 e^{i k_m (n_C - n_L) \ell/2} \big) \\ 0 &= n_C \big( A_3 e^{i k_m (n_C - n_R) \ell/2} - A_2 e^{- i k_m (n_C + n_R) \ell/2} \big) - n_R A_4 \end{aligned}$$ Which can be rewritten in matrix form as follows, with the system matrix on the left: $$\begin{aligned} \begin{bmatrix} 1 & -e^{i k_m (n_C - n_L) \ell/2} & -e^{- i k_m (n_C + n_L) \ell/2} & 0 \\ 0 & e^{- i k_m (n_C + n_R) \ell/2} & e^{i k_m (n_C - n_R) \ell/2} & -1 \\ n_L & -n_C e^{i k_m (n_C - n_L) \ell/2} & n_C e^{- i k_m (n_C + n_L) \ell/2} & 0 \\ 0 & -n_C e^{- i k_m (n_C + n_R) \ell/2} & n_C e^{i k_m (n_C - n_R) \ell/2} & -n_R \end{bmatrix} \cdot \begin{bmatrix} A_1 \\ A_2 \\ A_3 \\ A_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \end{aligned}$$ We want non-trivial solutions, where we cannot simply satisfy the system by setting $A_1$, $A_2$, $A_3$ and $A_4$; this constraint will give us an equation for $k_m$. Therefore, we demand that the system matrix is singular, i.e. its determinant is zero: $$\begin{aligned} 0 = &- n_C (n_L + n_R) \big( e^{i k_m (2 n_C - n_L - n_R) \ell/2} + e^{- i k_m (2 n_C + n_L + n_R) \ell/2} \big) \\ &+ (n_C^2 + n_L n_R) \big( e^{i k_m (2 n_C - n_L - n_R) \ell/2} - e^{- i k_m (2 n_C + n_L + n_R) \ell/2} \big) \end{aligned}$$ We multiply by $e^{i k_m (n_L + n_R) \ell / 2}$ and decompose the exponentials into sines and cosines: $$\begin{aligned} 0 = i 2 (n_C^2 + n_L n_R) \sin(k_m n_C \ell) - 2 n_C (n_L + n_R) \cos(k_m n_C \ell) \end{aligned}$$ Finally, some further rearranging gives a convenient transcendental equation: $$\begin{aligned} \boxed{ 0 = \tan(k_m n_C \ell) + i \frac{n_C (n_L + n_R)}{n_C^2 + n_L n_R} } \end{aligned}$$ Thanks to linearity, we can choose one of the amplitudes $A_1$, $A_2$, $A_3$ or $A_4$ freely, and then the others are determined by $k_m$ and the field's continuity. ## Macroscopic cavity Next, consider a "macroscopic" Fabry-Pérot cavity with complex mirror structures at boundaries, e.g. Bragg reflectors. If the cavity is large enough, we can neglect the mirrors' thicknesses, and just use their reflection coefficients $r_L$ and $r_R$. We use the same ansatz: $$\begin{aligned} E_m(x) = \begin{cases} A_1 e^{-i k_m n_L x} & \mathrm{for}\; x < -\ell/2 \\ A_2 e^{-i k_m n_C x} + A_3 e^{i k_m n_C x} & \mathrm{for}\; \!-\!\ell/2 < x < \ell/2 \\ A_4 e^{i k_m n_R x} & \mathrm{for}\; \ell/2 < x \end{cases} \end{aligned}$$ On the left, $A_3$ is the reflection of $A_2$, and on the right, $A_2$ is the reflection of $A_3$, where the reflected amplitudes are determined by the coefficients $r_L$ and $r_R$, respectively: $$\begin{aligned} A_3 e^{- i k_m n_C \ell/2} &= r_L A_2 e^{i k_m n_C \ell/2} \\ A_2 e^{-i k_m n_C \ell/2} &= r_R A_3 e^{i k_m n_C \ell/2} \end{aligned}$$ These equations might seem to contradict each other. We recast them into matrix form: $$\begin{aligned} \begin{bmatrix} 1 & - r_R e^{i k_m n_C \ell} \\ - r_L e^{i k_m n_C \ell} & 1 \end{bmatrix} \cdot \begin{bmatrix} A_2 \\ A_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \end{aligned}$$ Again, we demand that the determinant is zero, in order to get non-trivial solutions: $$\begin{aligned} 0 &= 1 - r_L r_R e^{i 2 k_m n_C \ell} \end{aligned}$$ Isolating this for $k_m$ yields the following modes, where $m$ is an arbitrary integer: $$\begin{aligned} \boxed{ k_m = - \frac{\ln(r_L r_R) + i 2 \pi m}{i 2 n_C \ell} } \end{aligned}$$ These $k_m$ satisfy the matrix equation above. Thanks to linearity, we can choose one of $A_2$ or $A_3$, and then the other is determined by the corresponding reflection equation. Finally, we look at the light transmitted through the mirrors, according to $1 \!-\! r_L$ and $1 \!-\! r_R$: $$\begin{aligned} A_1 e^{i k_m n_L \ell/2} &= (1 - r_L) A_2 e^{i k_m n_C \ell/2} \\ A_4 e^{i k_m n_R \ell/2} &= (1 - r_R) A_3 e^{i k_m n_C \ell/2} \end{aligned}$$ We simply isolate for $A_1$ and $A_4$ respectively, yielding the following amplitudes: $$\begin{aligned} A_1 &= (1 - r_L) A_2 e^{i k_m (n_C - n_L) \ell/2} \\ A_4 &= (1 - r_R) A_3 e^{i k_m (n_C - n_R) \ell/2} \end{aligned}$$ Note that we have not demanded continuity of the electric field. This is because the mirrors are infinitely thin "magic" planes; had we instead used the full mirror structure, then we would have demanded continuity, as you maybe expected. ## References 1. P.T. Kristensen, K. Herrmann, F. Intravaia, K. Busch, [Modeling electromagnetic resonators using quasinormal modes](https://doi.org/10.1364/AOP.377940), 2020, Optical Society of America.