--- title: "Fermi-Dirac distribution" sort_title: "Fermi-Dirac distribution" date: 2021-07-11 categories: - Physics - Statistics - Quantum mechanics layout: "concept" --- **Fermi-Dirac statistics** describe how identical **fermions**, which obey the [Pauli exclusion principle](/know/concept/pauli-exclusion-principle/), distribute themselves across the available states in a system at equilibrium. Consider one single-particle state $$s$$, which can contain $$0$$ or $$1$$ fermions. Because the occupation number $$N$$ is variable, we turn to the [grand canonical ensemble](/know/concept/grand-canonical-ensemble/), whose grand partition function $$\mathcal{Z}$$ is as follows, where $$\varepsilon$$ is the energy of $$s$$ and $$\mu$$ is the chemical potential: $$\begin{aligned} \mathcal{Z} = \sum_{N = 0}^1 \Big( e^{-\beta (\varepsilon - \mu)} \Big)^N = 1 + e^{-\beta (\varepsilon - \mu)} \end{aligned}$$ The corresponding [thermodynamic potential](/know/concept/thermodynamic-potential/) is the Landau potential $$\Omega$$, given by: $$\begin{aligned} \Omega = - k T \ln{\mathcal{Z}} = - k T \ln\!\Big( 1 + e^{-\beta (\varepsilon - \mu)} \Big) \end{aligned}$$ The average number of particles $$\expval{N}$$ in $$s$$ is then found by taking a derivative of $$\Omega$$: $$\begin{aligned} \expval{N} = - \pdv{\Omega}{\mu} = k T \pdv{\ln{\mathcal{Z}}}{\mu} = \frac{e^{-\beta (\varepsilon - \mu)}}{1 + e^{-\beta (\varepsilon - \mu)}} \end{aligned}$$ By multiplying both the numerator and the denominator by $$e^{\beta (\varepsilon \!-\! \mu)}$$, we arrive at the standard form of the **Fermi-Dirac distribution** or **Fermi function** $$f_F$$: $$\begin{aligned} \boxed{ \expval{N} = f_F(\varepsilon) = \frac{1}{e^{\beta (\varepsilon - \mu)} + 1} } \end{aligned}$$ This gives the expected occupation number $$\expval{N}$$ of state $$s$$ with energy $$\varepsilon$$, given a temperature $$T$$ and chemical potential $$\mu$$. {% comment %} The corresponding variance $$\sigma^2 \equiv \expval{N^2} - \expval{N}^2$$ is found to be: $$\begin{aligned} \boxed{ \sigma^2 = k T \pdv{\expval{N}}{\mu} = \expval{N} \big(1 - \expval{N}\big) } \end{aligned}$$ {% endcomment %} ## References 1. H. Gould, J. Tobochnik, *Statistical and thermal physics*, 2nd edition, Princeton.