--- title: "Hellmann-Feynman theorem" sort_title: "Hellmann-Feynman theorem" date: 2021-11-29 categories: - Physics - Quantum mechanics layout: "concept" --- Consider the time-independent Schrödinger equation, where the Hamiltonian $$\hat{H}$$ depends on a general parameter $$\lambda$$, whose meaning or type we will not specify: $$\begin{aligned} \hat{H}(\lambda) \Ket{\psi_n(\lambda)} = E_n(\lambda) \Ket{\psi_n(\lambda)} \end{aligned}$$ Assuming all eigenstates $$\Ket{\psi_n}$$ are normalized, this gives us the following basic relation: $$\begin{aligned} \matrixel{\psi_m}{\hat{H}}{\psi_n} = E_n \Inprod{\psi_m}{\psi_n} = \delta_{mn} E_n \end{aligned}$$ We differentiate this with respect to $$\lambda$$, which could be a scalar or a vector. This yields: $$\begin{aligned} \delta_{mn} \nabla_\lambda E_n &= \nabla_\lambda \matrixel{\psi_m}{\hat{H}}{\psi_n} \\ &= \matrixel{\nabla_\lambda \psi_m}{\hat{H}}{\psi_n} + \matrixel{\psi_m}{\nabla_\lambda \hat{H}}{\psi_n} + \matrixel{\psi_m}{\hat{H}}{\nabla_\lambda \psi_n} \\ &= E_m \Inprod{\psi_m}{\nabla_\lambda \psi_n} + E_n \Inprod{\nabla_\lambda \psi_m}{\psi_n} + \matrixel{\psi_m}{\nabla_\lambda \hat{H}}{\psi_n} \end{aligned}$$ In order to simplify this, we differentiate the orthogonality relation $$\Inprod{\psi_m}{\psi_n} = \delta_{mn}$$, which ends up telling us that $$\Inprod{\nabla_\lambda \psi_m}{\psi_n} = - \Inprod{\psi_m}{\nabla_\lambda \psi_n}$$: $$\begin{aligned} 0 = \nabla_\lambda \delta_{mn} = \nabla_\lambda \Inprod{\psi_m}{\psi_n} = \Inprod{\nabla_\lambda \psi_m}{\psi_n} + \Inprod{\psi_m}{\nabla_\lambda \psi_n} \end{aligned}$$ Using this result to replace $$\Inprod{\nabla_\lambda \psi_m}{\psi_n}$$ in the previous equation leads to: $$\begin{aligned} \delta_{mn} \nabla_\lambda E_n &= (E_m - E_n) \Inprod{\psi_m}{\nabla_\lambda \psi_n} + \matrixel{\psi_m}{\nabla_\lambda \hat{H}}{\psi_n} \end{aligned}$$ For $$m = n$$, we therefore arrive at the **Hellmann-Feynman theorem**, which is useful when doing numerical calculations to minimize energies with respect to $$\lambda$$: $$\begin{aligned} \boxed{ \nabla_\lambda E_n = \matrixel{\psi_n}{\nabla_\lambda \hat{H}}{\psi_n} } \end{aligned}$$ While for $$m \neq n$$, we get the **Epstein generalization** of the Hellmann-Feynman theorem, which is for example relevant for the [Berry phase](/know/concept/berry-phase/): $$\begin{aligned} \boxed{ (E_n - E_m) \Inprod{\psi_m}{\nabla_\lambda \psi_n} = \matrixel{\psi_m}{\nabla_\lambda \hat{H}}{\psi_n} } \end{aligned}$$ ## References 1. G. Grosso, G.P. Parravicini, *Solid state physics*, 2nd edition, Elsevier.