--- title: "Larmor precession" sort_title: "Larmor precession" date: 2021-07-02 categories: - Physics - Quantum mechanics layout: "concept" --- Consider a stationary spin-1/2 particle, placed in a [magnetic field](/know/concept/magnetic-field/) with magnitude $$B$$ pointing in the $$z$$-direction. In that case, its Hamiltonian $$\hat{H}$$ is given by: $$\begin{aligned} \hat{H} = - \gamma B \hat{S}_z = - \frac{\hbar}{2} \gamma B \hat{\sigma_z} \end{aligned}$$ Where $$\gamma = - q / m$$ is the gyromagnetic ratio, and $$\hat{\sigma}_z$$ is the Pauli spin matrix for the $$z$$-direction. Since $$\hat{H}$$ is proportional to $$\hat{\sigma}_z$$, they share eigenstates $$\Ket{\downarrow}$$ and $$\Ket{\uparrow}$$. The respective eigenenergies $$E_{\downarrow}$$ and $$E_{\uparrow}$$ are as follows: $$\begin{aligned} E_{\downarrow} = \frac{\hbar}{2} \gamma B \qquad E_{\uparrow} = - \frac{\hbar}{2} \gamma B \end{aligned}$$ Because $$\hat{H}$$ is time-independent, the general time-dependent solution $$\Ket{\chi(t)}$$ is of the following form, where $$a$$ and $$b$$ are constants, and the exponentials are "twiddle factors": $$\begin{aligned} \Ket{\chi(t)} = a \exp(- i E_{\downarrow} t / \hbar) \: \Ket{\downarrow} \:+\: b \exp(- i E_{\uparrow} t / \hbar) \: \Ket{\uparrow} \end{aligned}$$ For our purposes, we can safely assume that $$a$$ and $$b$$ are real, and then say that there exists an angle $$\theta$$ satisfying $$a = \sin(\theta / 2)$$ and $$b = \cos(\theta / 2)$$, such that: $$\begin{aligned} \Ket{\chi(t)} = \sin(\theta / 2) \exp(- i E_{\downarrow} t / \hbar) \: \Ket{\downarrow} \:+\: \cos(\theta / 2) \exp(- i E_{\uparrow} t / \hbar) \: \Ket{\uparrow} \end{aligned}$$ Now, we find the expectation values of the spin operators $$\expval{\hat{S}_x}$$, $$\expval{\hat{S}_y}$$, and $$\expval{\hat{S}_z}$$. The first is: $$\begin{aligned} \matrixel{\chi}{\hat{S}_x}{\chi} &= \frac{\hbar}{2} \begin{bmatrix} a \exp(i E_{\downarrow} t / \hbar) \\ b \exp(i E_{\uparrow} t / \hbar) \end{bmatrix}^{\mathrm{T}} \cdot \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} a \exp(- i E_{\downarrow} t / \hbar) \\ b \exp(- i E_{\uparrow} t / \hbar) \end{bmatrix} \\ &= \frac{\hbar}{2} \begin{bmatrix} a \exp(i E_{\downarrow} t / \hbar) \\ b \exp(i E_{\uparrow} t / \hbar) \end{bmatrix}^{\mathrm{T}} \cdot \begin{bmatrix} b \exp(- i E_{\uparrow} t / \hbar) \\ a \exp(- i E_{\downarrow} t / \hbar) \end{bmatrix} \\ &= \frac{\hbar}{2} \Big( a b \exp(i (E_{\downarrow} \!-\! E_{\uparrow}) t / \hbar) + b a \exp(i (E_{\uparrow} \!-\! E_{\downarrow}) t / \hbar) \Big) \\ &= \frac{\hbar}{2} \cos(\theta/2) \sin(\theta/2) \Big( \exp(i \gamma B t) + \exp(- i \gamma B t) \Big) \\ &= \frac{\hbar}{2} \cos(\gamma B t) \Big( \cos(\theta/2) \sin(\theta/2) + \cos(\theta/2) \sin(\theta/2) \Big) \\ &= \frac{\hbar}{2} \sin(\theta) \cos(\gamma B t) \end{aligned}$$ The other two are calculated in the same way, with the following results: $$\begin{aligned} \matrixel{\chi}{\hat{S}_y}{\chi} = - \frac{\hbar}{2} \sin(\theta) \sin(\gamma B t) \qquad \matrixel{\chi}{\hat{S}_z}{\chi} = \frac{\hbar}{2} \cos(\theta) \end{aligned}$$ The result is that the spin axis is off by $$\theta$$ from the $$z$$-direction, and is rotating (or **precessing**) around the $$z$$-axis at the **Larmor frequency** $$\omega$$: $$\begin{aligned} \boxed{ \omega = \gamma B } \end{aligned}$$ ## References 1. D.J. Griffiths, D.F. Schroeter, *Introduction to quantum mechanics*, 3rd edition, Cambridge.