--- title: "Matsubara Green's function" sort_title: "Matsubara Green's function" date: 2021-11-12 categories: - Physics - Quantum mechanics layout: "concept" --- The **Matsubara Green's function** is an [imaginary-time](/know/concept/imaginary-time/) version of the real-time [Green's functions](/know/concept/greens-functions/). We define as follows in the imaginary-time [Heisenberg picture](/know/concept/heisenberg-picture/): $$\begin{aligned} \boxed{ C_{AB}(\tau, \tau') \equiv -\frac{1}{\hbar} \Expval{\mathcal{T} \big\{ \hat{A}(\tau) \hat{B}(\tau') \big\}} } \end{aligned}$$ Where the expectation value $$\Expval{}$$ is with respect to thermodynamic equilibrium, and $$\mathcal{T}$$ is the [time-ordered product](/know/concept/time-ordered-product/) pseudo-operator. Because the Hamiltonian $$\hat{H}$$ cannot depend on the imaginary time, $$C_{AB}$$ is a function of the difference $$\tau \!-\! \tau'$$ only: $$\begin{aligned} C_{AB}(\tau, \tau') &= - \frac{1}{\hbar Z} \Tr\!\Big( e^{-\beta \hat{H}} \hat{A}(\tau) \hat{B}(\tau') \Big) \\ &= - \frac{1}{\hbar Z} \Tr\!\Big( e^{-\beta \hat{H}} e^{\tau \hat{H} / \hbar} \hat{A} e^{-\tau \hat{H} / \hbar} e^{\tau' \hat{H} / \hbar} \hat{B} e^{-\tau' \hat{H} / \hbar} \Big) \\ &= - \frac{1}{\hbar Z} \Tr\!\Big( e^{-\beta \hat{H}} e^{(\tau - \tau') \hat{H} / \hbar} \hat{A} e^{-(\tau - \tau') \hat{H} / \hbar} \hat{B} \Big) \end{aligned}$$ For $$\tau > \tau'$$, we see by expanding in the many-particle eigenstates $$\Ket{n}$$ that we need to demand $$\hbar \beta > \tau \!-\! \tau'$$ to prevent $$C_{AB}$$ from diverging for increasing temperatures: $$\begin{aligned} C_{AB}(\tau \!-\! \tau') &= - \frac{1}{\hbar Z} \sum_{n} \Matrixel{n}{e^{-\beta \hat{H}} e^{(\tau - \tau') \hat{H} / \hbar} \hat{A} e^{-(\tau - \tau') \hat{H} / \hbar} \hat{B}}{n} \\ &= - \frac{1}{\hbar Z} \sum_{n} \Matrixel{n}{\hat{A} e^{-(\tau - \tau') \hat{H} / \hbar} \hat{B}}{n} e^{-\beta E_n} e^{(\tau - \tau') E_n / \hbar} \end{aligned}$$ And likewise, for $$\tau < \tau'$$, we must demand that $$\tau \!-\! \tau' > -\hbar \beta$$ for the same reason: $$\begin{aligned} C_{AB}(\tau \!-\! \tau') &= \mp \frac{1}{\hbar Z} \Tr\!\Big( e^{-\beta \hat{H}} \hat{B}(\tau') \hat{A}(\tau) \Big) \\ &= \mp \frac{1}{\hbar Z} \Tr\!\Big( e^{-\beta \hat{H}} e^{-(\tau - \tau') \hat{H} / \hbar} \hat{B} e^{(\tau - \tau') \hat{H} / \hbar} \hat{A} \Big) \\ &= \mp \frac{1}{\hbar Z} \sum_{n} \Matrixel{n}{\hat{B} e^{(\tau - \tau') \hat{H} / \hbar} \hat{A}}{n} e^{-\beta E_n} e^{- (\tau - \tau') E_n / \hbar} \end{aligned}$$ With $$-$$ for bosons, and $$+$$ for fermions, due to the time-ordered product for $$\tau > \tau'$$. On this domain $$[-\hbar \beta, \hbar \beta]$$, the Matsubara Green's function $$C_{AB}$$ obeys a useful shift relation: it is $$\hbar \beta$$-periodic for bosons, and $$\hbar \beta$$-antiperiodic for fermions: $$\begin{aligned} \boxed{ C_{AB}(\tau \!-\! \tau') = \begin{cases} \pm C_{AB}(\tau \!-\! \tau' \!+\! \hbar \beta) & \mathrm{if\;} \tau \!-\! \tau' < 0 \\ \pm C_{AB}(\tau \!-\! \tau' \!-\! \hbar \beta) & \mathrm{if\;} \tau \!-\! \tau' > 0 \end{cases} } \end{aligned}$$ {% include proof/start.html id="proof-period" -%} First $$\tau \!-\! \tau' < 0$$. We insert the argument $$\tau \!-\! \tau' \!+\! \hbar \beta$$, and use the cyclic property: $$\begin{aligned} C_{AB}(\tau \!-\! \tau' \!+\! \hbar \beta) &= - \frac{1}{\hbar Z} \Tr\!\Big( e^{-\beta \hat{H}} e^{(\tau - \tau' + \hbar \beta) \hat{H} / \hbar} \hat{A} e^{-(\tau - \tau' + \hbar \beta) \hat{H} / \hbar} \hat{B} \Big) \\ &= - \frac{1}{\hbar Z} \Tr\!\Big( e^{(\tau - \tau') \hat{H} / \hbar} \hat{A} e^{-(\tau - \tau') \hat{H} / \hbar} e^{-\beta \hat{H}} \hat{B} \Big) \\ &= - \frac{1}{\hbar Z} \Tr\!\Big( e^{-\beta \hat{H}} e^{\tau' \hat{H} / \hbar} \hat{B} e^{-\tau' \hat{H} / \hbar} e^{\tau \hat{H} / \hbar} \hat{A} e^{-\tau \hat{H} / \hbar} \Big) \\ &= - \frac{1}{\hbar Z} \Tr\!\Big( e^{-\beta \hat{H}} \hat{B}(\tau') \hat{A}(\tau) \Big) \end{aligned}$$ Since $$\tau < \tau'$$ by assumption, we can bring back the time-ordered product $$\mathcal{T}$$: $$\begin{aligned} C_{AB}(\tau \!-\! \tau' \!+\! \hbar \beta) &= \mp \frac{1}{\hbar Z} \Tr\!\Big( e^{-\beta \hat{H}} \mathcal{T}\big\{ \hat{A}(\tau) \hat{B}(\tau') \big\} \Big) \\ &= \pm C_{AB}(\tau \!-\! \tau') \end{aligned}$$ Moving on to $$\tau \!-\! \tau' > 0$$, the proof is perfectly analogous: $$\begin{aligned} C_{AB}(\tau \!-\! \tau' \!-\! \hbar \beta) &= \mp \frac{1}{\hbar Z} \Tr\!\Big( e^{-\beta \hat{H}} e^{-(\tau - \tau' - \hbar \beta) \hat{H} / \hbar} \hat{B} e^{(\tau - \tau' - \hbar \beta) \hat{H} / \hbar} \hat{A} \Big) \\ &= \mp \frac{1}{\hbar Z} \Tr\!\Big( e^{-(\tau - \tau') \hat{H} / \hbar} \hat{B} e^{(\tau - \tau') \hat{H} / \hbar} e^{-\beta \hat{H}} \hat{A} \Big) \\ &= \mp \frac{1}{\hbar Z} \Tr\!\Big( e^{-\beta \hat{H}} e^{\tau \hat{H} / \hbar} \hat{A} e^{-\tau \hat{H} / \hbar} e^{\tau' \hat{H} / \hbar} \hat{B} e^{-\tau' \hat{H} / \hbar} \Big) \\ &= \mp \frac{1}{\hbar Z} \Tr\!\Big( e^{-\beta \hat{H}} \hat{A}(\tau) \hat{B}(\tau') \Big) \\ &= \mp \frac{1}{\hbar Z} \Tr\!\Big( e^{-\beta \hat{H}} \mathcal{T}\big\{ \hat{A}(\tau) \hat{B}(\tau') \big\} \Big) \\ &= \pm C_{AB}(\tau \!-\! \tau') \end{aligned}$$ {% include proof/end.html id="proof-period" %} Due to this limited domain $$\tau \in [-\hbar \beta, \hbar \beta]$$, the [Fourier transform](/know/concept/fourier-transform/) of $$C_{AB}(\tau)$$ consists of discrete frequencies $$k_n \equiv n \pi / (\hbar \beta)$$. The forward and inverse Fourier transforms are therefore defined as given below (with $$\tau' = 0$$). It is convention to write $$C_{AB}(i k_n)$$ instead of $$C_{AB}(k_n)$$: $$\begin{aligned} \boxed{ \begin{aligned} C_{AB}(i k_n) &\equiv \frac{1}{2} \int_{-\hbar \beta}^{\hbar \beta} C_{AB}(\tau) \: e^{i k_n \tau} \dd{\tau} \\ C_{AB}(\tau) &= \frac{1}{\hbar \beta} \sum_{n = -\infty}^\infty C_{AB}(i k_n) e^{-i k_n \tau} \end{aligned} } \end{aligned}$$ {% include proof/start.html id="proof-fourier-def" -%} We will prove that one is indeed the inverse of the other. We demand that the inverse FT of the forward FT of $$C_{AB}(\tau)$$ is simply $$C_{AB}(\tau)$$ again: $$\begin{aligned} C_{AB}(\tau) &= \frac{1}{\hbar \beta} \sum_{n = -\infty}^\infty \bigg( \frac{1}{2} \int_{-\hbar \beta}^{\hbar \beta} C_{AB}(\tau') \: e^{i k_n \tau'} \dd{\tau'} \bigg) e^{-i k_n \tau} \\ &= \frac{1}{\hbar \beta} \int_{-\hbar \beta}^{\hbar \beta} C_{AB}(\tau') \bigg( \frac{1}{2} \sum_{n = -\infty}^\infty e^{i k_n (\tau' - \tau)} \bigg) \dd{\tau'} \\ &= \frac{\pi}{\hbar \beta} \int_{-\hbar \beta}^{\hbar \beta} C_{AB}(\tau') \bigg( \frac{1}{2 \pi} \sum_{n = -\infty}^\infty e^{i \pi n (\tau' - \tau) / \hbar \beta} \bigg) \dd{\tau'} \end{aligned}$$ Here, the inner expression turns out to be a [Dirac delta function](/know/concept/dirac-delta-function/): $$\begin{aligned} \frac{1}{2 \pi} \sum_{n = -\infty}^\infty e^{i n x} = \delta(x) \end{aligned}$$ From which the rest of the proof follows straightforwardly: $$\begin{aligned} C_{AB}(\tau) &= \frac{\pi}{\hbar \beta} \int_{-\hbar \beta}^{\hbar \beta} C_{AB}(\tau') \: \delta\big( (\tau' \!-\! \tau) \pi / \hbar \beta \big) \dd{\tau'} \\ &= \frac{\pi \hbar \beta}{\pi \hbar \beta} \int_{-\hbar \beta}^{\hbar \beta} C_{AB}(\tau') \: \delta(\tau' \!-\! \tau) \dd{\tau'} \\ &= \int_{-\hbar \beta}^{\hbar \beta} C_{AB}(\tau') \: \delta(\tau' \!-\! \tau) \dd{\tau'} \\ &= C_{AB}(\tau) \end{aligned}$$ {% include proof/end.html id="proof-fourier-def" %} Let us now define the **Matsubara frequencies** $$\omega_n$$ as a species-dependent subset of $$k_n$$: $$\begin{aligned} \boxed{ \omega_n \equiv \begin{cases} \displaystyle\frac{2 n \pi}{\hbar \beta} & \mathrm{bosons} \\ \displaystyle\frac{(2 n + 1) \pi}{\hbar \beta} & \mathrm{fermions} \end{cases} } \end{aligned}$$ With this, we can rewrite the definition of the forward Fourier transform as follows: $$\begin{aligned} \boxed{ C_{AB}(i \omega_n) = \int_0^{\hbar \beta} C_{AB}(\tau) \: e^{i \omega_n \tau} \dd{\tau} = \int_{-\hbar \beta}^0 C_{AB}(\tau) \: e^{i \omega_n \tau} \dd{\tau} } \end{aligned}$$ {% include proof/start.html id="proof-fourier-alt" -%} We split the integral, shift its limits, and use the (anti)periodicity of $$C_{AB}$$: $$\begin{aligned} C_{AB}(i k_n) &= \frac{1}{2} \int_0^{\hbar \beta} C_{AB}(\tau) \: e^{i k_n \tau} \dd{\tau} + \frac{1}{2} \int_{-\hbar \beta}^0 C_{AB}(\tau) \: e^{i k_n \tau} \dd{\tau} \\ &= \frac{1}{2} \int_0^{\hbar \beta} C_{AB}(\tau) \: e^{i k_n \tau} \dd{\tau} + \frac{1}{2} \int_0^{\hbar \beta} C_{AB}(\tau \!-\! \hbar \beta) \: e^{i k_n (\tau - \hbar \beta)} \dd{\tau} \\ &= \frac{1}{2} \int_0^{\hbar \beta} \Big( C_{AB}(\tau) \pm C_{AB}(\tau) \: e^{-i k_n \hbar \beta} \Big) \: e^{i k_n \tau} \dd{\tau} \\ &= \frac{1}{2} \big( 1 \pm e^{-i k_n \hbar \beta} \big) \int_0^{\hbar \beta} C_{AB}(\tau) \: e^{i k_n \tau} \dd{\tau} \end{aligned}$$ With $$+$$ for bosons, and $$-$$ for fermions. Since $$k_n \equiv n \pi / (\hbar \beta)$$, we know $$e^{-i k_n \hbar \beta} \in \{-1, 1\}$$, so for bosons all odd $$n$$ vanish, and for fermions all even $$n$$, yielding the desired result. For the other case, we simply shift the first integral's limits instead of the seconds': $$\begin{aligned} C_{AB}(i k_n) &= \frac{1}{2} \int_{-\hbar \beta}^0 C_{AB}(\tau \!+\! \hbar \beta) \: e^{i k_n (\tau + \hbar \beta)} \dd{\tau} + \frac{1}{2} \int_0^{\hbar \beta} C_{AB}(\tau) \: e^{i k_n \tau} \dd{\tau} \\ &= \frac{1}{2} \int_{-\hbar \beta}^0 \Big( C_{AB}(\tau) \pm C_{AB}(\tau) \: e^{i k_n \hbar \beta} \Big) \: e^{i k_n \tau} \dd{\tau} \\ &= \frac{1}{2} \big( 1 \pm e^{-i k_n \hbar \beta} \big) \int_{-\hbar \beta}^0 C_{AB}(\tau) \: e^{i k_n \tau} \dd{\tau} \end{aligned}$$ {% include proof/end.html id="proof-fourier-alt" %} If we actually evaluate this, we obtain the following form of $$C_{AB}$$, which is almost identical to the [Lehmann representation](/know/concept/lehmann-representation/) of the "ordinary" retarded and advanced Green's functions: $$\begin{aligned} \boxed{ C_{AB}(i \omega_m) = \frac{1}{Z} \sum_{n n'} \frac{\matrixel{n}{\hat{A}}{n'} \matrixel{n'}{\hat{B}}{n}}{i \hbar \omega_m + E_n - E_{n'}} \Big( e^{-\beta E_n} \mp e^{- \beta E_{n'}} \Big) } \end{aligned}$$ {% include proof/start.html id="proof-lehmann" -%} For $$\tau \!-\! \tau' > 0$$, we start by expanding in the many-particle eigenstates $$\Ket{n}$$: $$\begin{aligned} C_{AB}(\tau \!-\! \tau') &= - \frac{1}{\hbar Z} \sum_{n} \Matrixel{n}{e^{-\beta \hat{H}} e^{(\tau - \tau') \hat{H} / \hbar} \hat{A} e^{-(\tau - \tau') \hat{H} / \hbar} \hat{B}}{n} \\ &= - \frac{1}{\hbar Z} \sum_{n n'} \Matrixel{n}{e^{-\beta \hat{H}} e^{(\tau - \tau') \hat{H} / \hbar} \hat{A}}{n'} \Matrixel{n'}{e^{-(\tau - \tau') \hat{H} / \hbar} \hat{B}}{n} \\ &= - \frac{1}{\hbar Z} \sum_{n n'} e^{-\beta E_n} \matrixel{n}{\hat{A}}{n'} \matrixel{n'}{\hat{B}}{n} e^{(E_n - E_{n'})(\tau - \tau') / \hbar} \end{aligned}$$ We take the Fourier transform by integrating over $$[0, \hbar \beta]$$: $$\begin{aligned} C_{AB}(i \omega_m) &= - \frac{1}{\hbar Z} \sum_{n n'} e^{-\beta E_n} \matrixel{n}{\hat{A}}{n'} \matrixel{n'}{\hat{B}}{n} \int_0^{\hbar \beta} e^{(E_n - E_{n'}) \tau / \hbar} e^{i \omega_m \tau} \dd{\tau} \\ &= - \frac{1}{\hbar Z} \sum_{n n'} e^{-\beta E_n} \matrixel{n}{\hat{A}}{n'} \matrixel{n'}{\hat{B}}{n} \bigg[ \frac{\hbar e^{(i \hbar \omega_m + E_n - E_{n'}) \tau / \hbar}}{i \hbar \omega_m + E_n - E_{n'}} \bigg]_0^{\hbar \beta} \\ &= - \frac{1}{Z} \sum_{n n'} e^{-\beta E_n} \frac{\matrixel{n}{\hat{A}}{n'} \matrixel{n'}{\hat{B}}{n}}{i \hbar \omega_m + E_n - E_{n'}} \Big( e^{(i \hbar \omega_m + E_n - E_{n'}) \beta} - 1 \Big) \\ &= - \frac{1}{Z} \sum_{n n'} \frac{\matrixel{n}{\hat{A}}{n'} \matrixel{n'}{\hat{B}}{n}}{i \hbar \omega_m + E_n - E_{n'}} \Big( e^{i \hbar \omega_m \beta} e^{-\beta E_{n'}} - e^{-\beta E_n} \Big) \\ &= \frac{1}{Z} \sum_{n n'} \frac{\matrixel{n}{\hat{A}}{n'} \matrixel{n'}{\hat{B}}{n}}{i \hbar \omega_m + E_n - E_{n'}} \Big( e^{-\beta E_n} \mp e^{- \beta E_{n'}} \Big) \end{aligned}$$ Moving on to $$\tau \!-\! \tau' < 0$$, we again expand in the many-particle eigenstates $$\Ket{n}$$: $$\begin{aligned} C_{AB}(\tau \!-\! \tau') &= \mp \frac{1}{\hbar Z} \sum_{n} \Matrixel{n}{e^{-\beta \hat{H}} e^{- (\tau - \tau') \hat{H} / \hbar} \hat{B} e^{(\tau - \tau') \hat{H} / \hbar} \hat{A}}{n} \\ &= \mp \frac{1}{\hbar Z} \sum_{n n'} \Matrixel{n}{e^{-\beta \hat{H}} e^{-(\tau - \tau') \hat{H} / \hbar} \hat{B}}{n'} \Matrixel{n'}{e^{(\tau - \tau') \hat{H} / \hbar} \hat{A}}{n} \\ &= \mp \frac{1}{\hbar Z} \sum_{n n'} e^{-\beta E_n} \matrixel{n}{\hat{B}}{n'} \matrixel{n'}{\hat{A}}{n} e^{-(E_n - E_{n'})(\tau - \tau') / \hbar} \end{aligned}$$ Since $$\tau \!-\! \tau' < 0$$ this time, we take the Fourier transform over $$[-\hbar \beta, 0]$$: $$\begin{aligned} C_{AB}(i \omega_m) &= \mp \frac{1}{\hbar Z} \sum_{n n'} e^{-\beta E_n} \matrixel{n}{\hat{B}}{n'} \matrixel{n'}{\hat{A}}{n} \int_{-\hbar \beta}^0 e^{-(E_n - E_{n'}) \tau / \hbar} e^{i \omega_m \tau} \dd{\tau} \\ &= \mp \frac{1}{\hbar Z} \sum_{n n'} e^{-\beta E_n} \matrixel{n}{\hat{B}}{n'} \matrixel{n'}{\hat{A}}{n} \bigg[ \frac{\hbar e^{(i \hbar \omega_m - E_n + E_{n'}) \tau / \hbar}}{i \hbar \omega_m - E_n + E_{n'}} \bigg]_{-\hbar \beta}^0 \\ &= \mp \frac{1}{Z} \sum_{n n'} e^{-\beta E_n} \frac{\matrixel{n}{\hat{B}}{n'} \matrixel{n'}{\hat{A}}{n}}{i \hbar \omega_m - E_n + E_{n'}} \Big( 1 - e^{(-i \hbar \omega_m + E_n - E_{n'}) \beta} \Big) \\ &= \mp \frac{1}{Z} \sum_{n n'} \frac{\matrixel{n}{\hat{B}}{n'} \matrixel{n'}{\hat{A}}{n}}{i \hbar \omega_m - E_n + E_{n'}} \Big( e^{-\beta E_n} - e^{-i \hbar \omega_m \beta} e^{-\beta E_{n'}} \Big) \\ &= \mp \frac{1}{Z} \sum_{n n'} \frac{\matrixel{n}{\hat{B}}{n'} \matrixel{n'}{\hat{A}}{n}}{i \hbar \omega_m - E_n + E_{n'}} \Big( e^{- \beta E_n} \pm e^{-\beta E_{n'}} \Big) \\ &= \frac{1}{Z} \sum_{n n'} \frac{\matrixel{n}{\hat{B}}{n'} \matrixel{n'}{\hat{A}}{n}}{i \hbar \omega_m - E_n + E_{n'}} \Big( e^{- \beta E_{n'}} \mp e^{-\beta E_n} \Big) \end{aligned}$$ Where swapping $$n$$ and $$n'$$ gives the desired result. {% include proof/end.html id="proof-lehmann" %} This gives us the primary use of the Matsubara Green's function $$C_{AB}$$: calculating the retarded $$C_{AB}^R$$ and advanced $$C_{AB}^A$$. Once we have an expression for Matsubara's $$C_{AB}$$, we can recover $$C_{AB}^R$$ and $$C_{AB}^A$$ by substituting $$i \omega_m \to \omega \!+\! i \eta$$ and $$i \omega_m \to \omega \!-\! i \eta$$ respectively. In general, we can define the **canonical Green's function** $$C_{AB}(z)$$ on the complex plane: $$\begin{aligned} C_{AB}(z) = \frac{1}{Z} \sum_{n n'} \frac{\matrixel{n}{\hat{A}}{n'} \matrixel{n'}{\hat{B}}{n}}{z + E_n - E_{n'}} \Big( e^{-\beta E_n} \mp e^{- \beta E_{n'}} \Big) \end{aligned}$$ This is a [holomorphic function](/know/concept/holomorphic-function/), except for poles on the real axis. It turns out that $$C_{AB}(z)$$ must have these properties for the substitution $$i \omega_n \to \omega \!\pm\! i \eta$$ to be valid. ## References 1. H. Bruus, K. Flensberg, *Many-body quantum theory in condensed matter physics*, 2016, Oxford.