--- title: "Matsubara sum" sort_title: "Matsubara sum" date: 2021-11-13 categories: - Physics - Quantum mechanics layout: "concept" --- A **Matsubara sum** is a summation of the following form, which notably appears as the inverse [Fourier transform](/know/concept/fourier-transform/) of the [Matsubara Green's function](/know/concept/matsubara-greens-function/): $$\begin{aligned} \boxed{ S_{B,F} \equiv \frac{1}{\hbar \beta} \sum_{n = -\infty}^\infty g(i \omega_n) \: e^{i \omega_n \tau} } \end{aligned}$$ $$g(z)$$ is a *meromorphic* function on the complex frequency plane, i.e. it is [holomorphic](/know/concept/holomorphic-function/) except for a known set of simple poles, and $$\tau \in [-\hbar \beta, \hbar \beta]$$ is a real parameter. The Matsubara frequencies $$i \omega_n$$ are defined as follows for bosons (subscript $$B$$) or fermions (subscript $$F$$): $$\begin{aligned} \omega_n \equiv \begin{cases} \displaystyle\frac{2 n \pi}{\hbar \beta} & \mathrm{bosons} \\ \displaystyle\frac{(2 n + 1) \pi}{\hbar \beta} & \mathrm{fermions} \end{cases} \end{aligned}$$ How do we evaluate Matsubara sums? Given a counter-clockwise closed contour $$C$$, recall that the [residue theorem](/know/concept/residue-theorem/) turns an integral over $$C$$ into a sum of the residues of all the integrand's simple poles $$p_g$$ that are enclosed by $$C$$: $$\begin{aligned} \oint_C \frac{g(z) \: e^{z \tau}}{i 2 \pi} \dd{z} = \sum_{p_g} \underset{z \to p_g}{\mathrm{Res}}\Big\{ g(z) \: e^{z \tau} \Big\} = \sum_{p_g} \underset{z \to p_g}{\mathrm{Res}}\Big\{ g(z) \Big\} \: e^{p_g \tau} \end{aligned}$$ Now, the trick is to manipulate this relation until a Matsubara sum appears on the right. Let us introduce a (for now) unspecified weight function $$h(z)$$, which crucially does not share any simple poles with $$g(z)$$, so $$\{p_g\} \cap \{p_h\} = \emptyset$$. This constraint allows us to split the sum: $$\begin{aligned} \oint_C \frac{g(z) \: h(z) \: e^{z \tau}}{i 2 \pi} \dd{z} &= \sum_{p_g} \underset{z \to p_g}{\mathrm{Res}}\Big\{ g(z) \: h(z) \: e^{z \tau} \Big\} + \sum_{p_h} \underset{z \to p_h}{\mathrm{Res}}\Big\{ g(z) \: h(z) \: e^{z \tau} \Big\} \\ &= \sum_{p_g} \underset{z \to p_g}{\mathrm{Res}}\Big\{ g(z) \Big\} \: h(p_g) \: e^{p_g \tau} + \sum_{p_h} g(p_h) \: \underset{z \to p_h}{\mathrm{Res}}\Big\{ h(z) \Big\} \: e^{p_h \tau} \end{aligned}$$ Here, we could make the rightmost term look like a Matsubara sum if we choose $$h$$ such that it has poles at $$i \omega_n$$. We make the following choice, where $$n_B(z)$$ is the [Bose-Einstein distribution](/know/concept/bose-einstein-distribution/) for bosons, and $$n_F(z)$$ is the [Fermi-Dirac distribution](/know/concept/fermi-dirac-distribution/) for fermions: $$\begin{aligned} h(z) \equiv \begin{cases} n_{B,F}(z) & \mathrm{if}\; \tau \ge 0 \\ -n_{B,F}(-z) & \mathrm{if}\; \tau \le 0 \end{cases} \end{aligned}$$ The distinction between the signs of $$\tau$$ is necessary to ensure that $$h(z) \: e^{z \tau} \to 0$$ for all $$z$$ when $$|z| \to \infty$$ (take a moment to convince yourself of this). The sign flip for $$\tau \le 0$$ is also needed, as negating the argument negates the residues $$\mathrm{Res}\{ n_{B,F}(-i \omega_n) \} = -\mathrm{Res}\{ n_{B,F}(i \omega_n) \}$$. Indeed, this choice of $$h$$ has poles at the respective Matsubara frequencies $$i \omega_n$$ of bosons and fermions, and the residues are given by: $$\begin{aligned} \underset{z \to i \omega_n}{\mathrm{Res}}\!\Big\{ n_B(z) \Big\} &= \lim_{z \to i \omega_n}\!\bigg( \frac{z - i \omega_n}{e^{\hbar \beta z} - 1} \bigg) = \lim_{\eta \to 0}\!\bigg( \frac{i \omega_n + \eta - i \omega_n}{e^{i \hbar \beta \omega_n} e^{\hbar \beta \eta} - 1} \bigg) \\ &= \lim_{\eta \to 0}\!\bigg( \frac{\eta}{e^{\hbar \beta \eta} - 1} \bigg) = \lim_{\eta \to 0}\!\bigg( \frac{\eta}{1 + \hbar \beta \eta - 1} \bigg) = \frac{1}{\hbar \beta} \\ \underset{z \to i \omega_n}{\mathrm{Res}}\!\Big\{ n_F(z) \Big\} &= \lim_{z \to i \omega_n}\!\bigg( \frac{z - i \omega_n}{e^{\hbar \beta z} + 1} \bigg) = \lim_{\eta \to 0}\!\bigg( \frac{i \omega_n + \eta - i \omega_n}{e^{i \hbar \beta \omega_n} e^{\hbar \beta \eta} + 1} \bigg) \\ &= \lim_{\eta \to 0}\!\bigg( \frac{\eta}{e^{\hbar \beta \eta} + 1} \bigg) = \lim_{\eta \to 0}\!\bigg( \frac{\eta}{- 1 - \hbar \beta \eta + 1} \bigg) = - \frac{1}{\hbar \beta} \end{aligned}$$ With this, our contour integral can now be rewritten as follows: $$\begin{aligned} \oint_C \frac{g(z) \: h(z) \: e^{z \tau}}{i 2 \pi} \dd{z} &= \sum_{p_g} \underset{z \to p_g}{\mathrm{Res}}\Big\{ g(z) \Big\} \: n_{B,F}(p_g) \: e^{p_g \tau} + \sum_{i \omega_n} g(i \omega_n) \underset{z \to i \omega_n}{\mathrm{Res}}\!\Big\{ n_{B,F}(z) \Big\} \: e^{i \omega_n \tau} \\ &= \sum_{p_g} \underset{z \to p_g}{\mathrm{Res}}\Big\{ g(z) \Big\} \: n_{B,F}(p_g) \: e^{p_g \tau} \pm \frac{1}{\hbar \beta} \sum_{n = -\infty}^\infty g(i \omega_n) \: e^{i \omega_n \tau} \end{aligned}$$ Where the top sign ($$+$$) is for bosons, and the bottom sign ($$-$$) is for fermions. Here, we recognize the last term as the Matsubara sum $$S_{F,B}$$. Isolating for that yields: $$\begin{aligned} S_{B,F} = \mp \sum_{p_g} \underset{z \to p_g}{\mathrm{Res}}\Big\{ g(z) \Big\} \: n_{B,F}(p_g) \: e^{p_g \tau} \pm \oint_C \frac{g(z) \: h(z) \: e^{z \tau}}{i 2 \pi} \dd{z} \end{aligned}$$ Now we must choose $$C$$. Earlier, we took care that $$h(z) \: e^{z \tau} \to 0$$ for $$|z| \to \infty$$, so a good choice would be a circle of radius $$R$$. If $$R \to \infty$$, then $$C$$ encloses the whole complex plane, including all of the integrand's poles. However, because the integrand decays for $$|z| \to \infty$$, we conclude that the contour integral must vanish (also for other choices of $$C$$): $$\begin{aligned} C = R e^{i \theta} \quad \implies \quad \lim_{R \to \infty} \oint_C g(z) \: h(z) \: e^{z \tau} \dd{z} = 0 \end{aligned}$$ We thus arrive at the following results for bosonic and fermionic Matsubara sums $$S_{B,F}$$: $$\begin{aligned} \boxed{ S_{B,F} = \mp \sum_{p_g} \underset{ {z \to p_g}}{\mathrm{Res}}\Big\{ g(z) \Big\} \: n_{B,F}(p_g) \: e^{p_g \tau} } \end{aligned}$$ ## References 1. H. Bruus, K. Flensberg, *Many-body quantum theory in condensed matter physics*, 2016, Oxford.