--- title: "Matsubara sum" date: 2021-11-13 categories: - Physics - Quantum mechanics layout: "concept" --- A **Matsubara sum** is a summation of the following form, which notably appears as the inverse [Fourier transform](/know/concept/fourier-transform/) of the [Matsubara Green's function](/know/concept/matsubara-greens-function/): $$\begin{aligned} S_{B,F} = \frac{1}{\hbar \beta} \sum_{i \omega_n} g(i \omega_n) \: e^{i \omega_n \tau} \end{aligned}$$ Where $i \omega_n$ are the Matsubara frequencies for bosons ($B$) or fermions ($F$), and $g(z)$ is a function on the complex plane that is [holomorphic](/know/concept/holomorphic-function/) except for a known set of simple poles, and $\tau$ is a real parameter (e.g. the [imaginary time](/know/concept/imaginary-time/)) satisfying $-\hbar \beta < \tau < \hbar \beta$. Now, consider the following integral over a (for now) unspecified counter-clockwise contour $C$, with a (for now) unspecified weighting function $h(z)$: $$\begin{aligned} \oint_C \frac{g(z) h(z)}{2 \pi i} e^{z \tau} \dd{z} = \sum_{z_p} e^{z_p \tau} \: \underset{z \to z_p}{\mathrm{Res}}\big( g(z) h(z) \big) \end{aligned}$$ Where we have applied the residue theorem to get a sum over all simple poles $z_p$ of either $g$ or $h$ (but not both) enclosed by $C$. Clearly, we could make this look like a Matsubara sum, if we choose $h$ such that it has poles at $i \omega_n$. Therefore, we choose the weighting function $h(z)$ as follows, where $n_B(z)$ is the [Bose-Einstein distribution](/know/concept/bose-einstein-distribution/), and $n_F(z)$ is the [Fermi-Dirac distribution](/know/concept/fermi-dirac-distribution/): $$\begin{aligned} h(z) = \begin{cases} n_{B,F}(z) & \mathrm{if}\; \tau \ge 0 \\ -n_{B,F}(-z) & \mathrm{if}\; \tau \le 0 \end{cases} \qquad \qquad n_{B,F}(z) = \frac{1}{e^{\hbar \beta z} \mp 1} \end{aligned}$$ The distinction between the signs of $\tau$ is needed to ensure that the integrand $h(z) e^{z \tau}$ decays for $|z| \to \infty$, both for $\Real(z) > 0$ and $\Real(z) < 0$. This choice of $h$ indeed has poles at the respective Matsubara frequencies $i \omega_n$ of bosons and fermions, and the residues are: $$\begin{aligned} \underset{z \to i \omega_n}{\mathrm{Res}}\!\big( n_B(z) \big) &= \lim_{z \to i \omega_n}\!\bigg( \frac{z - i \omega_n}{e^{\hbar \beta z} - 1} \bigg) = \lim_{\eta \to 0}\!\bigg( \frac{i \omega_n + \eta - i \omega_n}{e^{i \hbar \beta \omega_n} e^{\hbar \beta \eta} - 1} \bigg) \\ &= \lim_{\eta \to 0}\!\bigg( \frac{\eta}{e^{\hbar \beta \eta} - 1} \bigg) = \lim_{\eta \to 0}\!\bigg( \frac{\eta}{1 + \hbar \beta \eta - 1} \bigg) = \frac{1}{\hbar \beta} \\ \underset{z \to i \omega_n}{\mathrm{Res}}\!\big( n_F(z) \big) &= \lim_{z \to i \omega_n}\!\bigg( \frac{z - i \omega_n}{e^{\hbar \beta z} + 1} \bigg) = \lim_{\eta \to 0}\!\bigg( \frac{i \omega_n + \eta - i \omega_n}{e^{i \hbar \beta \omega_n} e^{\hbar \beta \eta} + 1} \bigg) \\ &= \lim_{\eta \to 0}\!\bigg( \frac{\eta}{e^{\hbar \beta \eta} + 1} \bigg) = \lim_{\eta \to 0}\!\bigg( \frac{\eta}{- 1 - \hbar \beta \eta + 1} \bigg) = - \frac{1}{\hbar \beta} \end{aligned}$$ In the definition of $h$, the sign flip for $\tau \le 0$ is introduced because negating the argument also negates the residues, i.e. $\mathrm{Res}\big( n_F(-z) \big) = -\mathrm{Res}\big( n_F(z) \big)$. With this $h$, our contour integral can be rewritten as follows: $$\begin{aligned} \oint_C \frac{g(z) h(z)}{2 \pi i} e^{z \tau} \dd{z} &= \sum_{z_p} e^{z_p \tau} n_{B,F}(z_p) \: \underset{z \to z_p}{\mathrm{Res}}\big( g(z) \big) + \sum_{i \omega_n} e^{i \omega_n \tau} g(i \omega_n) \: \underset{z \to i \omega_n}{\mathrm{Res}}\!\big( n_{B,F}(z) \big) \\ &= \sum_{z_p} e^{z_p \tau} n_{B,F}(z_p) \: \underset{z \to z_p}{\mathrm{Res}}\big( g(z) \big) \pm \frac{1}{\hbar \beta} \sum_{i \omega_n} g(i \omega_n) \: e^{i \omega_n \tau} \end{aligned}$$ Where $+$ is for bosons, and $-$ for fermions. Here, we recognize the last term as the Matsubara sum $S_{F,B}$, for which we isolate, yielding: $$\begin{aligned} S_{B,F} = \mp \sum_{z_p} e^{z_p \tau} n_{B,F}(z_p) \: \underset{z \to z_p}{\mathrm{Res}}\big( g(z) \big) \pm \oint_C \frac{g(z) h(z)}{2 \pi i} e^{z \tau} \dd{z} \end{aligned}$$ Now we must choose $C$. Assuming $g(z)$ does not interfere, we know that $h(z) e^{z \tau}$ decays to zero for $|z| \to \infty$, so a useful choice would be a circle of radius $R$. If we then let $R \to \infty$, the contour encloses the whole complex plane, including all of the integrand's poles. However, thanks to the integrand's decay, the resulting contour integral must vanish: $$\begin{aligned} C = R e^{i \theta} \quad \implies \quad \lim_{R \to \infty} \oint_C g(z) \: h(z) \: e^{z \tau} \dd{z} = 0 \end{aligned}$$ We thus arrive at the following results for bosonic and fermionic Matsubara sums $S_{B,F}$: $$\begin{aligned} \boxed{ S_{B,F} = \mp \sum_{z_p} e^{z_p \tau} n_{B,F}(z_p) \: \underset{ {z \to z_p}}{\mathrm{Res}}\big(g(z)\big) } \end{aligned}$$ ## References 1. H. Bruus, K. Flensberg, *Many-body quantum theory in condensed matter physics*, 2016, Oxford.