--- title: "Maxwell-Bloch equations" sort_title: "Maxwell-Bloch equations" date: 2021-10-02 categories: - Physics - Quantum mechanics - Two-level system - Electromagnetism - Laser theory layout: "concept" --- For an electron in a two-orbital system $$\{\ket{g}, \ket{e}\}$$, the Schrödinger equation has the following general solution, where $$\varepsilon_g$$ and $$\varepsilon_e$$ are the time-independent eigenenergies, and the weights $$c_g$$ and $$c_g$$ are functions of $$t$$: $$\begin{aligned} \ket{\Psi} &= c_g \ket{g} e^{-i \varepsilon_g t / \hbar} + c_e \ket{e} e^{-i \varepsilon_e t / \hbar} \end{aligned}$$ This system is being perturbed by an electromagnetic wave with [electric field](/know/concept/electric-field/) $$\vb{E}$$ given by: $$\begin{aligned} \vb{E}(t) &\equiv \vb{E}^{-}(t) + \vb{E}^{+}(t) \end{aligned}$$ Where the forward-propagating component $$\vb{E}^{+}$$ is a modulated plane wave $$\vb{E}_0^{+} e^{-i \omega t}$$ with slowly-varying amplitude $$\vb{E}_0^{+}(t)$$, and similarly $$\vb{E}^{-}(t) \equiv \vb{E}_0^{-}(t) e^{i \omega t}$$; since $$\vb{E}$$ is real, $$\vb{E}_0^{+} \!=\! (\vb{E}_0^{-})^*$$. For $$\ket{\Psi}$$ as defined above, the pure [density operator](/know/concept/density-operator/) $$\hat{\rho}$$ is as follows, with $$\omega_0 \equiv (\varepsilon_e \!-\! \varepsilon_g) / \hbar$$ being the transition's resonance frequency: $$\begin{aligned} \hat{\rho} = \ket{\Psi} \bra{\Psi} = \begin{bmatrix} c_e c_e^* & c_e c_g^* e^{-i \omega_0 t} \\ c_g c_e^* e^{i \omega_0 t} & c_g c_g^* \end{bmatrix} \equiv \begin{bmatrix} \rho_{ee} & \rho_{eg} \\ \rho_{ge} & \rho_{gg} \end{bmatrix} \end{aligned}$$ Under the [electric dipole approximation](/know/concept/electric-dipole-approximation/) and [rotating wave approximation](/know/concept/rotating-wave-approximation/), it can be shown that $$\hat{\rho}$$ is governed by the [optical Bloch equations](/know/concept/optical-bloch-equations/): $$\begin{aligned} \dv{\rho_{gg}}{t} &= \gamma_e \rho_{ee} - \gamma_g \rho_{gg} + \frac{i}{\hbar} \Big( \vb{p}_0^{+} \cdot \vb{E}^{-} \rho_{eg} - \vb{p}_0^{-} \cdot \vb{E}^{+} \rho_{ge} \Big) \\ \dv{\rho_{ee}}{t} &= \gamma_g \rho_{gg} - \gamma_e \rho_{ee} + \frac{i}{\hbar} \Big( \vb{p}_0^{-} \cdot \vb{E}^{+} \rho_{ge} - \vb{p}_0^{+} \cdot \vb{E}^{-} \rho_{eg} \Big) \\ \dv{\rho_{ge}}{t} &= - \Big( \gamma_\perp - i \omega_0 \Big) \rho_{ge} + \frac{i}{\hbar} \vb{p}_0^{+} \cdot \vb{E}^{-} \Big( \rho_{ee} - \rho_{gg} \Big) \\ \dv{\rho_{eg}}{t} &= - \Big( \gamma_\perp + i \omega_0 \Big) \rho_{eg} + \frac{i}{\hbar} \vb{p}_0^{-} \cdot \vb{E}^{+} \Big( \rho_{gg} - \rho_{ee} \Big) \end{aligned}$$ Where we have defined the transition dipole moment $$\vb{p}_0^{-}$$, with $$q < 0$$ the electron charge: $$\begin{aligned} \vb{p}_0^{-} \equiv q \matrixel{e}{\vu{x}}{g} \qquad \qquad \vb{p}_0^{+} \equiv (\vb{p}_0^{-})^* = q \matrixel{g}{\vu{x}}{e} \end{aligned}$$ However, the light wave affects the electron, so the actual electromagnetic dipole moment $$\vb{p}$$ is as follows, using [Laporte's selection rule](/know/concept/selection-rules/) to remove diagonal terms by assuming that the electron's orbitals are spatially odd or even: $$\begin{aligned} \vb{p} &= q \matrixel{\Psi}{\vu{x}}{\Psi} \\ &= q \Big( c_g c_g^* \matrixel{g}{\vu{x}}{g} + c_e c_e^* \matrixel{e}{\vu{x}}{e} + c_g c_e^* \matrixel{e}{\vu{x}}{g} e^{i \omega_0 t} + c_e c_g^* \matrixel{g}{\vu{x}}{e} e^{-i \omega_0 t} \Big) \\ &= q \Big( \rho_{ge} \matrixel{e}{\vu{x}}{g} + \rho_{eg} \matrixel{g}{\vu{x}}{e} \Big) \\ &= \vb{p}_0^{-} \rho_{ge}(t) + \vb{p}_0^{+} \rho_{eg}(t) \\ &\equiv \vb{p}^{-}(t) + \vb{p}^{+}(t) \end{aligned}$$ Where we have split $$\vb{p}$$ analogously to $$\vb{E}$$ by defining $$\vb{p}^{+} \equiv \vb{p}_0^{+} \rho_{eg}$$. Its equation of motion can then be found from the optical Bloch equations: $$\begin{aligned} \dv{\vb{p}^{+}}{t} = \vb{p}_0^{+} \dv{\rho_{eg}}{t} = - \vb{p}_0^{+} \Big( \gamma_\perp + i \omega_0 \Big) \rho_{eg} + \frac{i}{\hbar} \vb{p}_0^{+} \Big( \vb{p}_0^{-} \cdot \vb{E}^{+} \Big) \Big( \rho_{gg} - \rho_{ee} \Big) \end{aligned}$$ Some authors do not bother multiplying $$\rho_{ge}$$ by $$\vb{p}_0^{+}$$. In our case, we arrive at a prototype of the first of three Maxwell-Bloch equations: $$\begin{aligned} \boxed{ \dv{\vb{p}^{+}}{t} = - \Big( \gamma_\perp + i \omega_0 \Big) \vb{p}^{+} - \frac{i}{\hbar} \Big( \vb{p}_0^{-} \cdot \vb{E}^{+} \Big) \vb{p}_0^{+} d } \end{aligned}$$ Where we have defined the **population inversion** $$d \in [-1, 1]$$ like so, to quantify the electron's "excitedness" i.e. its localization to $$\ket{e}$$: $$\begin{aligned} d \equiv \rho_{ee} - \rho_{gg} \end{aligned}$$ From the optical Bloch equations, we find its equation of motion to be: $$\begin{aligned} \dv{d}{t} &= \dv{\rho_{ee}}{t} - \dv{\rho_{gg}}{t} = 2 \gamma_g \rho_{gg} - 2 \gamma_e \rho_{ee} + \frac{i 2}{\hbar} \Big( \vb{p}^{-} \cdot \vb{E}^{+} - \vb{p}^{+} \cdot \vb{E}^{-} \Big) \end{aligned}$$ We can rewrite the first two terms in the following intuitive form, which describes a decay with rate $$\gamma_\parallel \equiv \gamma_g + \gamma_e$$ towards an equilibrium $$d_0$$: $$\begin{aligned} 2 \gamma_g \rho_{gg} - 2 \gamma_e \rho_{ee} = \gamma_\parallel (d_0 - d) \qquad \qquad d_0 \equiv \frac{\gamma_g - \gamma_e}{\gamma_g + \gamma_e} \end{aligned}$$ {% include proof/start.html id="proof-inversion-decay" -%} We introduce some new terms, and reorganize the expression: $$\begin{aligned} 2 \gamma_g \rho_{gg} - 2 \gamma_e \rho_{ee} &= 2 \gamma_g \rho_{gg} - 2 \gamma_e \rho_{ee} + \gamma_g \rho_{ee} - \gamma_g \rho_{ee} + \gamma_e \rho_{gg} - \gamma_e \rho_{gg} \\ &= \gamma_g (\rho_{gg} + \rho_{ee}) - \gamma_e (\rho_{gg} + \rho_{ee}) + \gamma_g (\rho_{gg} - \rho_{ee}) + \gamma_e (\rho_{gg} - \rho_{ee}) \end{aligned}$$ Since the total probability $$\rho_{gg} + \rho_{ee} = 1$$, and $$d \equiv \rho_{ee} - \rho_{gg}$$, this reduces to: $$\begin{aligned} 2 \gamma_g \rho_{gg} - 2 \gamma_e \rho_{ee} &= \gamma_g - \gamma_e - (\gamma_g + \gamma_e) d \\ &= (\gamma_g + \gamma_e) \Big( \frac{\gamma_g - \gamma_e}{\gamma_g + \gamma_e} - d \Big) \\ &= \gamma_\parallel ( d_0 - d ) \end{aligned}$$ {% include proof/end.html id="proof-inversion-decay" %} With this, the equation for the population inversion $$d$$ takes the form below, namely the second Maxwell-Bloch equation's prototype: $$\begin{aligned} \boxed{ \dv{d}{t} = \gamma_\parallel (d_0 - d) + \frac{i 2}{\hbar} \Big( \vb{p}^{-} \cdot \vb{E}^{+} - \vb{p}^{+} \cdot \vb{E}^{-} \Big) } \end{aligned}$$ Finally, we would like a relation between the polarization and the electric field $$\vb{E}$$, for which we turn to [Maxwell's equations](/know/concept/maxwells-equations/); we will effectively derive a modified form of the [electromagnetic wave equation](/know/concept/electromagnetic-wave-equation/). Starting from Faraday's law and splitting $$\vb{B} = \mu_0 (\vb{H} + \vb{M})$$: $$\begin{aligned} \nabla \cross \vb{E} = - \pdv{\vb{B}}{t} = - \mu_0 \pdv{\vb{H}}{t} - \mu_0 \pdv{\vb{M}}{t} \end{aligned}$$ We assume that there is no magnetization $$\vb{M} = 0$$. Then we we take the curl of both sides, and replace $$\nabla \cross \vb{H}$$ with Ampère's circuital law: $$\begin{aligned} \nabla \cross \big( \nabla \cross \vb{E} \big) = - \mu_0 \pdv{}{t} \big( \nabla \cross \vb{H} \big) = - \mu_0 \pdv{}{t} \Big( \vb{J}_\mathrm{free} + \pdv{\vb{D}}{t} \Big) \end{aligned}$$ Inserting the definition $$\vb{D} = \varepsilon_0 \vb{E} + \vb{P}$$ together with Ohm's law $$\vb{J}_\mathrm{free} = \sigma \vb{E}$$ yields: $$\begin{aligned} \nabla \cross \big( \nabla \cross \vb{E} \big) = - \mu_0 \sigma \pdv{\vb{E}}{t} - \mu_0 \varepsilon_0 \pdvn{2}{\vb{E}}{t} - \mu_0 \pdvn{2}{\vb{P}}{t} \end{aligned}$$ Where $$\sigma$$ is the active material's conductivity, if any; almost all authors assume $$\sigma = 0$$. Recall that we are describing the dynamics of a two-level system. In reality, such a system (e.g. a quantum dot) is suspended in a passive background medium, which reacts with a polarization $$\vb{P}_\mathrm{med}$$ to the electric field $$\vb{E}$$. If the medium is linear, i.e. $$\vb{P}_\mathrm{med} = \varepsilon_0 \chi \vb{E}$$, then: $$\begin{aligned} \mu_0 \pdvn{2}{\vb{P}}{t} &= - \nabla \cross \big( \nabla \cross \vb{E} \big) - \mu_0 \sigma \pdv{\vb{E}}{t} - \mu_0 \varepsilon_0 \pdvn{2}{\vb{E}}{t} - \mu_0 \pdvn{2}{\vb{P}_\mathrm{med}}{t} \\ &= - \nabla \cross \big( \nabla \cross \vb{E} \big) - \mu_0 \sigma \pdv{\vb{E}}{t} - \mu_0 \pdvn{2}{}{t}\Big( \varepsilon_0 \vb{E} + \varepsilon_0 \chi \vb{E} \Big) \\ &= - \nabla \cross \big( \nabla \cross \vb{E} \big) - \mu_0 \sigma \pdv{\vb{E}}{t} - \mu_0 \varepsilon_0 \varepsilon_r \pdvn{2}{\vb{E}}{t} \end{aligned}$$ Where $$\varepsilon_r \equiv 1 + \chi_e$$ is the medium's relative permittivity. The speed of light $$c^2 = 1 / (\mu_0 \varepsilon_0)$$, and the refractive index $$n^2 = \mu_r \varepsilon_r$$, where $$\mu_r = 1$$ due to our assumption that $$\vb{M} = 0$$, so the third Maxwell-Bloch equation's prototype is: $$\begin{aligned} \boxed{ \mu_0 \pdvn{2}{\vb{P}}{t} = - \nabla \cross \big( \nabla \cross \vb{E} \big) - \mu_0 \sigma \pdv{\vb{E}}{t} - \frac{n^2}{c^2} \pdvn{2}{\vb{E}}{t} } \end{aligned}$$ $$\vb{E}$$ and $$\vb{P}$$ can trivially be replaced by $$\vb{E}^{+}$$ and $$\vb{P}^{+}$$. It is also simple to convert $$\vb{p}^{+}$$ and $$d$$ into the macroscopic $$\vb{P}^{+}$$ and total $$D$$ by summing over all two-level systems in the medium: $$\begin{aligned} \vb{P}^{+}(\vb{x}, t) &= \sum_{\nu} \vb{p}^{+}_\nu \: \delta(\vb{x} - \vb{x}_\nu) \\ D(\vb{x}, t) &= \sum_{\nu} d_\nu \: \delta(\vb{x} - \vb{x}_\nu) \end{aligned}$$ We thus arrive at the **Maxwell-Bloch equations**, which are the foundation of laser theory: $$\begin{aligned} \boxed{ \begin{aligned} \mu_0 \pdvn{2}{\vb{P}^{+}}{t} &= - \nabla \cross \nabla \cross \vb{E}^{+} - \mu_0 \sigma \pdv{\vb{E}^{+}}{t} - \frac{n^2}{c^2} \pdvn{2}{\vb{E}^{+}}{t} \\ \pdv{\vb{P}^{+}}{t} &= - \Big( \gamma_\perp + i \omega_0 \Big) \vb{P}^{+} - \frac{i}{\hbar} \Big( \vb{p}_0^{-} \cdot \vb{E}^{+} \Big) \vb{p}_0^{+} D \\ \pdv{D}{t} &= \gamma_\parallel (D_0 - D) + \frac{i 2}{\hbar} \Big( \vb{P}^{-} \cdot \vb{E}^{+} - \vb{P}^{+} \cdot \vb{E}^{-} \Big) \end{aligned} } \end{aligned}$$ ## References 1. F. Kärtner, [Ultrafast optics: lecture notes](https://ocw.mit.edu/courses/6-977-ultrafast-optics-spring-2005/pages/lecture-notes/), 2005, Massachusetts Institute of Technology. 2. H. Haken, *Light: volume 2: laser light dynamics*, 1985, North-Holland.