--- title: "Multi-photon absorption" sort_title: "Multi-photon absorption" date: 2022-01-30 categories: - Physics - Optics - Quantum mechanics - Nonlinear optics - Perturbation layout: "concept" --- Consider a quantum system where there are many eigenstates $$\Ket{n}$$, e.g. atomic orbitals, for an electron to occupy. Suppose an [electromagnetic wave](/know/concept/electromagnetic-wave-equation/) passes by, such that its Hamiltonian gets perturbed by $$\hat{H}_1$$, given in the [electric dipole approximation](/know/concept/electric-dipole-approximation/) by: $$\begin{aligned} \hat{H}_1(t) = -\vu{p} \cdot \vb{E} \cos(\omega t) \approx -\vu{p} \cdot \vb{E} e^{-i \omega t} \end{aligned}$$ Where $$\vb{E}$$ is the [electric field](/know/concept/electric-field/) amplitude, and $$\vu{p} \equiv q \vu{x}$$ is the transition dipole moment operator. Here, we have made the [rotating wave approximation](/know/concept/rotating-wave-approximation/) to neglect the $$e^{i \omega t}$$ term, because it turns out to be irrelevant in this discussion. We call the ground state $$\Ket{0}$$, but other than that, the other states need *not* be sorted by energy. However, we demand that the following holds for all even-numbered states $$\Ket{e}$$ and $$\Ket{e'}$$, and for all odd-numbered ($$u$$neven) states $$\Ket{u}$$ and $$\Ket{u'}$$: $$\begin{aligned} \matrixel{e}{\hat{H}_1}{e'} = \matrixel{u}{\hat{H}_1}{u'} = 0 \qquad \quad \matrixel{e}{\hat{H}_1}{u} \neq 0 \end{aligned}$$ This is justified for atomic orbitals thanks to [Laporte's selection rule](/know/concept/selection-rules/). Therefore, [time-dependent perturbation theory](/know/concept/time-dependent-perturbation-theory/) says that the $$N$$th-order coefficient corrections are: $$\begin{aligned} c_e^{(N)}(t) &= -\frac{i}{\hbar} \sum_{u}^{\mathrm{odd}} \int_0^t \matrixel{e}{\hat{H}_1(\tau)}{u} \: c_u^{(N-1)}(\tau) \: e^{i \omega_{eu} \tau} \dd{\tau} \\ c_u^{(N)}(t) &= -\frac{i}{\hbar} \sum_{e}^{\mathrm{even}} \int_0^t \matrixel{u}{\hat{H}_1(\tau)}{e} \: c_e^{(N-1)}(\tau) \: e^{i \omega_{ue} \tau} \dd{\tau} \end{aligned}$$ Where $$\omega_{eu} = (E_e \!-\! E_u) / \hbar$$. For simplicity, the electron starts in the lowest-energy state $$\Ket{0}$$: $$\begin{aligned} c_0^{(0)} = 1 \qquad \qquad c_u^{(0)} = c_{e \neq 0}^{(0)} = 0 \end{aligned}$$ Finally, we prove the following useful relation for large $$t$$, involving a [Dirac delta function](/know/concept/dirac-delta-function/) $$\delta$$: $$\begin{aligned} \lim_{t \to \infty} \bigg| \frac{e^{i x t} - 1}{x} \bigg|^2 = 2 \pi \: \delta(x) \: t \end{aligned}$$
## One-photon absorption To warm up, we start at first-order perturbation theory. Thanks to our choice of initial condition, nothing at all happens to any of the even-numbered states $$\Ket{e}$$: $$\begin{aligned} c_e^{(1)}(t) &= -\frac{i}{\hbar} \sum_{u}^{\mathrm{odd}} \int_0^t \matrixel{e}{\hat{H}_1(\tau)}{u} \: c_u^{(0)} \: e^{i \omega_{eu} \tau} \dd{\tau} = 0 \end{aligned}$$ While the odd-numbered states $$\Ket{u}$$ have a nonzero correction $$c_u^{(1)}$$, where $$\vb{p}_{u0} = \matrixel{u}{\vu{p}}{0}$$: $$\begin{aligned} c_u^{(1)}(t) &= -\frac{i}{\hbar} \int_0^t \matrixel{u}{\hat{H}_1(\tau)}{0} \: c_0^{(0)} \: e^{i \omega_{u0} \tau} \dd{\tau} \\ &= i \frac{\vb{p}_{u0} \cdot \vb{E}}{\hbar} \int_0^t e^{i (\omega_{u0} - \omega) \tau} \dd{\tau} \\ &= i \frac{\vb{p}_{u0} \cdot \vb{E}}{\hbar} \bigg[ \frac{e^{i (\omega_{u0} - \omega) \tau}}{i (\omega_{u0} - \omega)} \bigg]_0^t \end{aligned}$$ Consequently, the first-order correction (in the rotating wave approximation) is given by: $$\begin{aligned} \boxed{ c_u^{(1)}(t) \approx \frac{\vb{p}_{u0} \cdot \vb{E}}{\hbar} \frac{e^{i (\omega_{u0} - \omega) t} - 1}{\omega_{u0} - \omega} } \end{aligned}$$ Since $$\big| c_u^{(1)}(t) \big|^2$$ is the probability of finding the electron in $$\Ket{u}$$, its transition rate $$R_u^{(1)}(t)$$ is as follows, averaged since the beginning $$t = 0$$: $$\begin{aligned} R_u^{(1)}(t) = \frac{\big| c_u^{(1)}(t) \big|^2}{t} = \frac{1}{t} \bigg| \frac{\vb{p}_{u0} \cdot \vb{E}}{\hbar} \bigg|^2 \cdot \bigg| \frac{e^{i (\omega_{u0} - \omega) t} - 1}{\omega_{u0} - \omega} \bigg|^2 \end{aligned}$$ For large $$t \to \infty$$, we can use the formula we proved earlier to get [Fermi's golden rule](/know/concept/fermis-golden-rule/): $$\begin{aligned} \boxed{ R_u^{(1)} = 2 \pi \bigg| \frac{\vb{p}_{u0} \cdot \vb{E}}{\hbar} \bigg|^2 \delta(\omega_{u0} - \omega) } \end{aligned}$$ This well-known formula represents **one-photon absorption**: it peaks at $$\omega_{u0} = \omega$$, i.e. when one photon $$\hbar \omega$$ has the exact energy of the transition $$\hbar \omega_{u0}$$. Note that this transition is only possible when $$\matrixel{u}{\vu{p}}{0} \neq 0$$, i.e. for any odd-numbered final state $$\Ket{u}$$. ## Two-photon absorption Next, we go to second-order perturbation theory. Based on the previous result, this time all odd-numbered states $$\Ket{u}$$ are unaffected: $$\begin{aligned} c_u^{(2)}(t) &= -\frac{i}{\hbar} \sum_{e}^{\mathrm{even}} \int_0^t \matrixel{u}{\hat{H}_1(\tau)}{e} \: c_e^{(1)}(\tau) \: e^{i \omega_{ue} \tau} \dd{\tau} = 0 \end{aligned}$$ While the even-numbered states $$\Ket{e}$$ have the following correction, using $$\omega_{eu} \!+\! \omega_{u0} = \omega_{e0}$$: $$\begin{aligned} c_e^{(2)}(t) &= -\frac{i}{\hbar} \sum_{u}^{\mathrm{odd}} \int_0^t \matrixel{e}{\hat{H}_1(\tau)}{u} \: c_u^{(1)}(\tau) \: e^{i \omega_{eu} \tau} \dd{\tau} \\ &= i \sum_{u}^{\mathrm{odd}} \frac{(\vb{p}_{eu} \cdot \vb{E}) (\vb{p}_{u0} \cdot \vb{E})}{\hbar^2 (\omega_{u0} - \omega)} \int_0^t e^{i (\omega_{eu} + \omega_{u0} - 2 \omega) \tau} - e^{i (\omega_{eu} - \omega) \tau} \dd{\tau} \\ &= i \sum_{u}^{\mathrm{odd}} \frac{(\vb{p}_{eu} \cdot \vb{E}) (\vb{p}_{u0} \cdot \vb{E})}{\hbar^2 (\omega_{u0} - \omega)} \bigg[ \frac{e^{i (\omega_{e0} - 2 \omega) \tau}}{i (\omega_{e0} - 2 \omega)} - \frac{e^{i (\omega_{eu} - \omega) \tau}}{i (\omega_{eu} - \omega)} \bigg]_0^t \end{aligned}$$ The second term represents one-photon absorption between $$\Ket{u}$$ and $$\Ket{e}$$. We do not care about that, so we drop it, leaving only the first term: $$\begin{aligned} \boxed{ c_e^{(2)}(t) \approx \sum_{u}^{\mathrm{odd}} \frac{(\vb{p}_{eu} \cdot \vb{E}) (\vb{p}_{u0} \cdot \vb{E})}{\hbar^2 (\omega_{u0} - \omega)} \frac{e^{i (\omega_{e0} - 2 \omega) t} - 1}{\omega_{e0} - 2 \omega} } \end{aligned}$$ As before, we can define a rate $$R_e^{(2)}(t)$$ for all transitions represented by this term: $$\begin{aligned} R_e^{(2)}(t) = \frac{\big| c_e^{(2)}(t) \big|^2}{t} = \frac{1}{t} \bigg| \sum_{u}^{\mathrm{odd}} \frac{(\vb{p}_{eu} \cdot \vb{E}) (\vb{p}_{u0} \cdot \vb{E})}{\hbar^2 (\omega_{u0} - \omega)} \bigg|^2 \cdot \bigg| \frac{e^{i (\omega_{e0} - 2 \omega) t} - 1}{\omega_{e0} - 2 \omega} \bigg|^2 \end{aligned}$$ Which for $$t \to \infty$$ takes a similar form to Fermi's golden rule, using the formula we proved: $$\begin{aligned} \boxed{ R_e^{(2)} = 2 \pi \bigg| \sum_{u}^{\mathrm{odd}} \frac{(\vb{p}_{eu} \cdot \vb{E}) (\vb{p}_{u0} \cdot \vb{E})}{\hbar^2 (\omega_{u0} - \omega)} \bigg|^2 \delta(\omega_{e0} - 2 \omega) } \end{aligned}$$ This represents **two-photon absorption**, since it peaks at $$\omega_{e0} = 2 \omega$$: two identical photons $$\hbar \omega$$ are absorbed simultaneously to bridge the energy gap $$\hbar \omega_{e0}$$. Surprisingly, such a transition can only occur when $$\matrixel{e}{\vu{p}}{0} = 0$$, i.e. for any even-numbered final state $$\Ket{e}$$. Notice that the rate is proportional to $$|\vb{E}|^4$$, so this effect is only noticeable at high light intensities. ## Three-photon absorption For third-order perturbation theory, all even-numbered states $$\Ket{e}$$ are unchanged: $$\begin{aligned} c_e^{(3)}(t) &= -\frac{i}{\hbar} \sum_{u}^{\mathrm{odd}} \int_0^t \matrixel{e}{\hat{H}_1(\tau)}{u} \: c_u^{(2)}(\tau) \: e^{i \omega_{eu} \tau} \dd{\tau} = 0 \end{aligned}$$ And the odd-numbered states $$\Ket{u}$$ get the following third-order corrections: $$\begin{aligned} c_u^{(3)}(t) &= -\frac{i}{\hbar} \sum_{e}^{\mathrm{even}} \int_0^t \matrixel{u}{\hat{H}_1(\tau)}{e} \: c_e^{(2)}(\tau) \: e^{i \omega_{ue} \tau} \dd{\tau} \\ &= i \sum_{e}^{\mathrm{even}} \sum_{u'}^{\mathrm{odd}} \frac{(\vb{p}_{ue} \cdot \vb{E}) (\vb{p}_{eu'} \cdot \vb{E}) (\vb{p}_{u'0} \cdot \vb{E})}{\hbar^3 (\omega_{u'0} - \omega) (\omega_{e0} - 2 \omega)} \int_0^t e^{i (\omega_{ue} + \omega_{e0} - 3 \omega) \tau} - e^{i (\omega_{ue} - \omega) \tau} \dd{\tau} \\ &= i \sum_{e}^{\mathrm{even}} \sum_{u'}^{\mathrm{odd}} \frac{(\vb{p}_{ue} \cdot \vb{E}) (\vb{p}_{eu'} \cdot \vb{E}) (\vb{p}_{u'0} \cdot \vb{E})}{\hbar^3 (\omega_{u'0} - \omega) (\omega_{e0} - 2 \omega)} \bigg[ \frac{e^{i (\omega_{u0} - 3 \omega) \tau}}{i (\omega_{u0} - 3 \omega)} - \frac{e^{i (\omega_{ue} - \omega) \tau}}{i (\omega_{ue} - \omega)} \bigg]_0^t \end{aligned}$$ Once again, the second term is uninteresting, so we drop it and look at the first term only: $$\begin{aligned} \boxed{ c_u^{(3)}(t) \approx \sum_{e}^{\mathrm{even}} \sum_{u'}^{\mathrm{odd}} \frac{(\vb{p}_{ue} \cdot \vb{E}) (\vb{p}_{eu'} \cdot \vb{E}) (\vb{p}_{u'0} \cdot \vb{E})} {\hbar^3 (\omega_{u'0} - \omega) (\omega_{e0} - 2 \omega)} \frac{e^{i (\omega_{u0} - 3 \omega) t} - 1}{\omega_{u0} - 3 \omega} } \end{aligned}$$ The resulting transition rate $$R_u^{(3)}(t)$$ is found to have the following familiar form: $$\begin{aligned} R_u^{(3)}(t) = \frac{\big| c_u^{(3)}(t) \big|^2}{t} = \frac{1}{t} \bigg| \sum_{e}^{\mathrm{even}} \sum_{u'}^{\mathrm{odd}} \frac{(\vb{p}_{ue} \cdot \vb{E}) (\vb{p}_{eu'} \cdot \vb{E}) (\vb{p}_{u'0} \cdot \vb{E})} {\hbar^3 (\omega_{u'0} - \omega) (\omega_{e0} - 2 \omega)} \bigg|^2 \cdot \bigg| \frac{e^{i (\omega_{u0} - 3 \omega) t} - 1}{\omega_{u0} - 3 \omega} \bigg|^2 \end{aligned}$$ Applying our formula to this yields the following analogue of Fermi's golden rule: $$\begin{aligned} \boxed{ R_u^{(3)} = 2 \pi \bigg| \sum_{e}^{\mathrm{even}} \sum_{u'}^{\mathrm{odd}} \frac{(\vb{p}_{ue} \cdot \vb{E}) (\vb{p}_{eu'} \cdot \vb{E}) (\vb{p}_{u'0} \cdot \vb{E})} {\hbar^3 (\omega_{u'0} - \omega) (\omega_{e0} - 2 \omega)} \bigg|^2 \delta(\omega_{u0} - 3 \omega) } \end{aligned}$$ This represents **three-photon absorption**, since it peaks at $$\omega_{u0} = 3 \omega$$: three identical photons $$\hbar \omega$$ are absorbed simultaneously to bridge the energy gap $$\hbar \omega_{u0}$$. This process is similar to one-photon absorption, in the sense that it can only occur if $$\matrixel{u}{\vu{p}}{0} \neq 0$$. The rate is proportional to $$|\vb{E}|^6$$, so this effect only appears at extremely high light intensities. ## N-photon absorption A pattern has appeared in these calculations: in $$N$$th-order perturbation theory, we get a term representing $$N$$-photon absorption, with a transition rate proportional to $$|\vb{E}|^{2N}$$. Indeed, we can derive infinitely many formulas in this way, although the results become increasingly unrealistic due to the dependence on $$\vb{E}$$. If $$N$$ is odd, only odd-numbered destinations $$\Ket{u}$$ are allowed (assuming the electron starts in the ground state $$\Ket{0}$$), and if $$N$$ is even, only even-numbered destinations $$\Ket{e}$$. Note that nothing has been said about the energies of these states (other than $$\Ket{0}$$ being the minimum); everything is determined by the matrix elements $$\matrixel{f}{\vu{p}}{i}$$. ## References 1. R.W. Boyd, *Nonlinear optics*, 4th edition, Academic Press. 2. R. Shankar, *Principles of quantum mechanics*, 2nd edition, Springer.