--- title: "Optical Bloch equations" sort_title: "Optical Bloch equations" date: 2023-01-19 categories: - Physics - Quantum mechanics - Two-level system layout: "concept" --- For an electron in a two-level system with time-independent states $$\ket{g}$$ (ground) and $$\ket{e}$$ (excited), consider the following general solution to the time-dependent Schrödinger equation: $$\begin{aligned} \ket{\Psi} &= c_g \ket{g} e^{-i \varepsilon_g t / \hbar} + c_e \ket{e} e^{-i \varepsilon_e t / \hbar} \end{aligned}$$ Perturbing this system with an [electromagnetic wave](/know/concept/electromagnetic-wave-equation/) introduces a time-dependent sinusoidal term $$\hat{H}_1$$ to the Hamiltonian. In the [electric dipole approximation](/know/concept/electric-dipole-approximation/), $$\hat{H}_1$$ is given by: $$\begin{aligned} \hat{H}_1(t) = - \hat{\vb{p}} \cdot \vb{E}(t) \qquad \qquad \vu{p} \equiv q \vu{x} \qquad \qquad \vb{E}(t) = \vb{E}_0 \cos(\omega t) \end{aligned}$$ Where $$\vb{E}$$ is an [electric field](/know/concept/electric-field/), and $$\hat{\vb{p}}$$ is the dipole moment operator. From [Rabi oscillation](/know/concept/rabi-oscillation/), we know that the time-varying coefficients $$c_g$$ and $$c_e$$ can then be described by: $$\begin{aligned} \dv{c_g}{t} &= i \frac{q \matrixel{g}{\vu{x}}{e} \cdot \vb{E}_0}{2 \hbar} \: e^{i (\omega - \omega_0) t} \: c_e \\ \dv{c_e}{t} &= i \frac{q \matrixel{e}{\vu{x}}{g} \cdot \vb{E}_0}{2 \hbar} \: e^{- i (\omega - \omega_0) t} \: c_g \end{aligned}$$ Where $$\omega_0 \equiv (\varepsilon_e \!-\! \varepsilon_g) / \hbar$$ is the resonance frequency. We want to rearrange these equations a bit, so we split the field $$\vb{E}$$ as follows, where the amplitudes $$\vb{E}_0^{-}$$ and $$\vb{E}_0^{+}$$ may be slowly-varying with respect to the carrier wave $$e^{\pm i \omega t}$$: $$\begin{aligned} \vb{E}(t) &\equiv \vb{E}^{-}(t) + \vb{E}^{+}(t) \\ &\equiv \vb{E}_0^{-} e^{i \omega t} + \vb{E}_0^{+} e^{-i \omega t} \end{aligned}$$ Since $$\vb{E}$$ is real, $$\vb{E}_0^{+} = (\vb{E}_0^{-})^*$$. Similarly, we define the transition dipole moment $$\vb{p}_0^{-}$$: $$\begin{aligned} \vb{p}_0^{-} \equiv q \matrixel{e}{\vu{x}}{g} \qquad \qquad \vb{p}_0^{+} \equiv (\vb{p}_0^{-})^* = q \matrixel{g}{\vu{x}}{e} \end{aligned}$$ With these, the equations for $$c_g$$ and $$c_e$$ can be rewritten as shown below. Note that $$\vb{E}^{-}$$ and $$\vb{E}^{+}$$ include the driving plane wave, and the [rotating wave approximation](/know/concept/rotating-wave-approximation/) is still made: $$\begin{aligned} \dv{c_g}{t} &= \frac{i}{\hbar} \vb{p}_0^{+} \cdot \vb{E}^{-} e^{- i \omega_0 t} \: c_e \\ \dv{c_e}{t} &= \frac{i}{\hbar} \vb{p}_0^{-} \cdot \vb{E}^{+} e^{i \omega_0 t} \: c_g \end{aligned}$$ For $$\ket{\Psi}$$ as defined above, the corresponding pure [density operator](/know/concept/density-operator/) $$\hat{\rho}$$ is as follows: $$\begin{aligned} \hat{\rho} = \ket{\Psi} \bra{\Psi} = \begin{bmatrix} c_e c_e^* & c_e c_g^* e^{-i \omega_0 t} \\ c_g c_e^* e^{i \omega_0 t} & c_g c_g^* \end{bmatrix} \equiv \begin{bmatrix} \rho_{ee} & \rho_{eg} \\ \rho_{ge} & \rho_{gg} \end{bmatrix} \end{aligned}$$ We take the $$t$$-derivative of the matrix elements, and insert the equations for $$c_g$$ and $$c_e$$: $$\begin{aligned} \dv{\rho_{gg}}{t} &= \dv{c_g}{t} c_g^* + c_g \dv{c_g^*}{t} \\ &= \frac{i}{\hbar} \vb{p}_0^{+} \cdot \vb{E}^{-} c_e c_g^* e^{- i \omega_0 t} - \frac{i}{\hbar} \vb{p}_0^{-} \cdot \vb{E}^{+} c_g c_e^* e^{i \omega_0 t} \\ \dv{\rho_{ee}}{t} &= \dv{c_e}{t} c_e^* + c_e \dv{c_e^*}{t} \\ &= \frac{i}{\hbar} \vb{p}_0^{-} \cdot \vb{E}^{+} c_g c_e^* e^{i \omega_0 t} - \frac{i}{\hbar} \vb{p}_0^{+} \cdot \vb{E}^{-} c_e c_g^* e^{- i \omega_0 t} \\ \dv{\rho_{ge}}{t} &= \dv{c_g}{t} c_e^* e^{i \omega_0 t} + c_g \dv{c_e^*}{t} e^{i \omega_0 t} + i \omega_0 c_g c_e^* e^{i \omega_0 t} \\ &= \frac{i}{\hbar} \vb{p}_0^{+} \cdot \vb{E}^{-} c_e c_e^* - \frac{i}{\hbar} \vb{p}_0^{+} \cdot \vb{E}^{-} c_g c_g^* + i \omega_0 c_g c_e^* e^{i \omega_0 t} \\ \dv{\rho_{eg}}{t} &= \dv{c_e}{t} c_g^* e^{-i \omega_0 t} + c_e \dv{c_g^*}{t} e^{-i \omega_0 t} - i \omega_0 c_e c_g^* e^{- i \omega_0 t} \\ &= \frac{i}{\hbar} \vb{p}_0^{-} \cdot \vb{E}^{+} c_g c_g^* - \frac{i}{\hbar} \vb{p}_0^{-} \cdot \vb{E}^{+} c_e c_e^* - i \omega_0 c_e c_g^* e^{- i \omega_0 t} \end{aligned}$$ Recognizing the density matrix elements allows us to reduce these equations to: $$\begin{aligned} \dv{\rho_{gg}}{t} &= \frac{i}{\hbar} \Big( \vb{p}_0^{+} \cdot \vb{E}^{-} \rho_{eg} - \vb{p}_0^{-} \cdot \vb{E}^{+} \rho_{ge} \Big) \\ \dv{\rho_{ee}}{t} &= \frac{i}{\hbar} \Big( \vb{p}_0^{-} \cdot \vb{E}^{+} \rho_{ge} - \vb{p}_0^{+} \cdot \vb{E}^{-} \rho_{eg} \Big) \\ \dv{\rho_{ge}}{t} &= i \omega_0 \rho_{ge} + \frac{i}{\hbar} \vb{p}_0^{+} \cdot \vb{E}^{-} \big( \rho_{ee} - \rho_{gg} \big) \\ \dv{\rho_{eg}}{t} &= - i \omega_0 \rho_{eg} + \frac{i}{\hbar} \vb{p}_0^{-} \cdot \vb{E}^{+} \big( \rho_{gg} - \rho_{ee} \big) \end{aligned}$$ These equations are correct if nothing else is affecting $$\hat{\rho}$$. But in practice, these quantities decay due to various processes, e.g. [spontaneous emission](/know/concept/einstein-coefficients/). Suppose $$\rho_{ee}$$ decays with rate $$\gamma_e$$. Because the total probability $$\rho_{ee} + \rho_{gg} = 1$$, we have: $$\begin{aligned} \Big( \dv{\rho_{ee}}{t} \Big)_{e} = - \gamma_e \rho_{ee} \quad \implies \quad \Big( \dv{\rho_{gg}}{t} \Big)_{e} = \gamma_e \rho_{ee} \end{aligned}$$ Meanwhile, for whatever reason, let $$\rho_{gg}$$ decay into $$\rho_{ee}$$ with rate $$\gamma_g$$: $$\begin{aligned} \Big( \dv{\rho_{gg}}{t} \Big)_{g} = - \gamma_g \rho_{gg} \quad \implies \quad \Big( \dv{\rho_{gg}}{t} \Big)_{g} = \gamma_g \rho_{gg} \end{aligned}$$ And finally, let the diagonal (perpendicular) matrix elements both decay with rate $$\gamma_\perp$$: $$\begin{aligned} \Big( \dv{\rho_{eg}}{t} \Big)_{\perp} = - \gamma_\perp \rho_{eg} \qquad \qquad \Big( \dv{\rho_{ge}}{t} \Big)_{\perp} = - \gamma_\perp \rho_{ge} \end{aligned}$$ Putting everything together, we arrive at the **optical Bloch equations** governing $$\hat{\rho}$$: $$\begin{aligned} \boxed{ \begin{aligned} \dv{\rho_{gg}}{t} &= \gamma_e \rho_{ee} - \gamma_g \rho_{gg} + \frac{i}{\hbar} \Big( \vb{p}_0^{+} \cdot \vb{E}^{-} \rho_{eg} - \vb{p}_0^{-} \cdot \vb{E}^{+} \rho_{ge} \Big) \\ \dv{\rho_{ee}}{t} &= \gamma_g \rho_{gg} - \gamma_e \rho_{ee} + \frac{i}{\hbar} \Big( \vb{p}_0^{-} \cdot \vb{E}^{+} \rho_{ge} - \vb{p}_0^{+} \cdot \vb{E}^{-} \rho_{eg} \Big) \\ \dv{\rho_{ge}}{t} &= - \Big( \gamma_\perp - i \omega_0 \Big) \rho_{ge} + \frac{i}{\hbar} \vb{p}_0^{+} \cdot \vb{E}^{-} \Big( \rho_{ee} - \rho_{gg} \Big) \\ \dv{\rho_{eg}}{t} &= - \Big( \gamma_\perp + i \omega_0 \Big) \rho_{eg} + \frac{i}{\hbar} \vb{p}_0^{-} \cdot \vb{E}^{+} \Big( \rho_{gg} - \rho_{ee} \Big) \end{aligned} } \end{aligned}$$ Some authors simplify these equations a bit by choosing $$\gamma_g = 0$$ and $$\gamma_\perp = \gamma_e / 2$$. ## References 1. F. Kärtner, [Ultrafast optics: lecture notes](https://ocw.mit.edu/courses/6-977-ultrafast-optics-spring-2005/pages/lecture-notes/), 2005, Massachusetts Institute of Technology. 2. H.J. Metcalf, P. van der Straten, *Laser cooling and trapping*, 1999, Springer.