--- title: "Parabolic cylindrical coordinates" sort_title: "Parabolic cylindrical coordinates" date: 2021-03-04 categories: - Mathematics - Physics layout: "concept" --- **Parabolic cylindrical coordinates** extend parabolic coordinates $$(\sigma, \tau)$$ to 3D, by describing a point in space using the variables $$(\sigma, \tau, z)$$. The $$z$$-axis is the same as in the Cartesian system, (hence the name *cylindrical*), while the coordinate lines of $$\sigma$$ and $$\tau$$ are confocal parabolas. [Cartesian coordinates](/know/concept/cartesian-coordinates/) $$(x, y, z)$$ and this system $$(\sigma, \tau, z)$$ are related by: $$\begin{aligned} \boxed{ \begin{aligned} x &= \frac{1}{2} (\tau^2 - \sigma^2) \\ y &= \sigma \tau \\ z &= z \end{aligned} } \end{aligned}$$ Conversely, a point given in $$(x, y, z)$$ can be converted to $$(\sigma, \tau, z)$$ using these formulae: $$\begin{aligned} \boxed{ \begin{aligned} \sigma &= \sqrt{\sqrt{x^2 + y^2} - x} \\ \tau &= \sgn(y) \sqrt{\sqrt{x^2 + y^2} + x} \\ z &= z \end{aligned} } \end{aligned}$$ Parabolic cylindrical coordinates form an [orthogonal curvilinear system](/know/concept/orthogonal-curvilinear-coordinates/), whose **scale factors** $$h_\sigma$$, $$h_\tau$$ and $$h_z$$ we need. To get those, we calculate the unnormalized local basis: $$\begin{aligned} h_\sigma \vu{e}_\sigma &= \vu{e}_x \pdv{x}{\sigma} + \vu{e}_y \pdv{y}{\sigma} + \vu{e}_z \pdv{z}{\sigma} \\ &= - \vu{e}_x \sigma + \vu{e}_y \tau \\ h_\tau \vu{e}_\tau &= \vu{e}_x \pdv{x}{\tau} + \vu{e}_y \pdv{y}{\tau} + \vu{e}_z \pdv{z}{\tau} \\ &= \vu{e}_x \tau + \vu{e}_y \sigma \\ h_\sigma \vu{e}_\sigma &= \vu{e}_x \pdv{x}{z} + \vu{e}_y \pdv{y}{z} + \vu{e}_z \pdv{z}{z} \\ &= \vu{e}_z \end{aligned}$$ By normalizing the **local basis vectors** $$\vu{e}_\sigma$$, $$\vu{e}_\tau$$ and $$\vu{e}_z$$, we arrive at these expressions, where we have defined the abbreviation $$\rho$$ for convenience: $$\begin{aligned} \boxed{ \begin{aligned} h_\sigma &= \rho \equiv \sqrt{\sigma^2 + \tau^2} \\ h_\tau &= \rho \equiv \sqrt{\sigma^2 + \tau^2} \\ h_z &= 1 \end{aligned} } \qquad\qquad \boxed{ \begin{aligned} \vu{e}_\sigma &= - \vu{e}_x \frac{\sigma}{\rho} + \vu{e}_y \frac{\tau}{\rho} \\ \vu{e}_\tau &= \vu{e}_x \frac{\tau}{\rho} + \vu{e}_y \frac{\sigma}{\rho} \\ \vu{e}_z &= \vu{e}_z \end{aligned} } \end{aligned}$$ Thanks to these scale factors, we can easily convert calculus from the Cartesian system using the standard formulae for orthogonal curvilinear coordinates. ## Differential elements For line integrals, the tangent vector element $$\dd{\vb{\ell}}$$ for a curve is as follows: $$\begin{aligned} \boxed{ \dd{\vb{\ell}} = \vu{e}_\sigma \: \rho \dd{\sigma} + \: \vu{e}_\tau \: \rho \dd{\tau} + \: \vu{e}_z \dd{z} } \end{aligned}$$ For surface integrals, the normal vector element $$\dd{\vb{S}}$$ for a surface is given by: $$\begin{aligned} \boxed{ \dd{\vb{S}} = \vu{e}_\sigma \: \rho \dd{\tau} \dd{z} + \: \vu{e}_\tau \: \rho \dd{\sigma} \dd{z} + \: \vu{e}_z \: \rho^2 \dd{\sigma} \dd{\tau} } \end{aligned}$$ And for volume integrals, the infinitesimal volume $$\dd{V}$$ takes the following form: $$\begin{aligned} \boxed{ \dd{V} = \rho^2 \dd{\sigma} \dd{\tau} \dd{z} } \end{aligned}$$ ## Common operations The basic vector operations (gradient, divergence, curl and Laplacian) are given by: $$\begin{aligned} \boxed{ \nabla f = \vu{e}_\sigma \frac{1}{\rho} \pdv{f}{\sigma} + \vu{e}_\tau \frac{1}{\rho} \pdv{f}{\tau} + \vu{e}_z \pdv{f}{z} } \end{aligned}$$ $$\begin{aligned} \boxed{ \nabla \cdot \vb{V} = \frac{1}{\rho} \pdv{V_\sigma}{\sigma} + \frac{\sigma V_\sigma}{\rho^3} + \frac{1}{\rho} \pdv{V_\tau}{\tau} + \frac{\tau V_\tau}{\rho^3} + \pdv{V_z}{z} } \end{aligned}$$ $$\begin{aligned} \boxed{ \begin{aligned} \nabla \times \vb{V} &= \quad \vu{e}_\sigma \bigg( \frac{1}{\rho} \pdv{V_z}{\tau} - \pdv{V_\tau}{z} \bigg) \\ &\quad\: + \vu{e}_\tau \bigg( \pdv{V_\sigma}{z} - \frac{1}{\rho} \pdv{V_z}{\sigma} \bigg) \\ &\quad\: + \vu{e}_z \bigg( \frac{1}{\rho} \pdv{V_\tau}{\sigma} + \frac{\sigma V_\tau}{\rho^3} - \frac{1}{\rho} \pdv{V_\sigma}{\tau} - \frac{\tau V_\sigma}{\rho^3} \bigg) \end{aligned} } \end{aligned}$$ $$\begin{aligned} \boxed{ \nabla^2 f = \frac{1}{\rho^2} \pdvn{2}{f}{\sigma} + \frac{1}{\rho^2} \pdvn{2}{f}{\tau} + \pdvn{2}{f}{z} } \end{aligned}$$ ## Uncommon operations Uncommon operations include: the gradient of a divergence $$\nabla (\nabla \cdot \vb{V})$$, the gradient of a vector $$\nabla \vb{V}$$, the advection of a vector $$(\vb{U} \cdot \nabla) \vb{V}$$ with respect to $$\vb{U}$$, the Laplacian of a vector $$\nabla^2 \vb{V}$$, and the divergence of a 2nd-order tensor $$\nabla \cdot \overline{\overline{\vb{T}}}$$: $$\begin{aligned} \boxed{ \begin{aligned} \nabla (\nabla \cdot \vb{V}) &= \quad \vu{e}_\sigma \bigg( \frac{1}{\rho^2} \pdvn{2}{V_\sigma}{\sigma} + \frac{1}{\rho^2} \mpdv{V_\tau}{\sigma}{\tau} + \frac{1}{\rho} \mpdv{V_z}{\sigma}{z} \\ &\qquad\qquad + \frac{\tau}{\rho^4} \pdv{V_\tau}{\sigma} - \frac{\sigma}{\rho^4} \pdv{V_\tau}{\tau} + \frac{\rho^2 - 3 \sigma^2}{\rho^6} V_\sigma - \frac{3 \sigma \tau V_\tau}{\rho^6} \bigg) \\ &\quad\: + \vu{e}_\tau \bigg( \frac{1}{\rho^2} \mpdv{V_\sigma}{\tau}{\sigma} + \frac{1}{\rho^2} \pdvn{2}{V_\tau}{\tau} + \frac{1}{\rho} \mpdv{V_z}{\tau}{z} \\ &\qquad\qquad - \frac{\tau}{\rho^4} \pdv{V_\sigma}{\sigma} + \frac{\sigma}{\rho^4} \pdv{V_\sigma}{\tau} - \frac{3 \sigma \tau V_\sigma}{\rho^6} + \frac{\rho^2 - 3 \tau^2}{\rho^6} V_\tau \bigg) \\ &\quad\: + \vu{e}_z \bigg( \frac{1}{\rho} \mpdv{V_\sigma}{z}{\sigma} + \frac{1}{\rho} \mpdv{V_\tau}{z}{\tau} + \pdvn{2}{V_z}{z} + \frac{\sigma}{\rho^3} \pdv{V_\sigma}{z} + \frac{\tau}{\rho^3} \pdv{V_\tau}{z} \bigg) \end{aligned} } \end{aligned}$$ $$\begin{aligned} \boxed{ \begin{aligned} \nabla \vb{V} &= \quad \vu{e}_\sigma \vu{e}_\sigma \bigg( \frac{1}{\rho} \pdv{V_\sigma}{\sigma} + \frac{\tau V_\tau}{\rho^3} \bigg) + \vu{e}_\sigma \vu{e}_\tau \bigg( \frac{1}{\rho} \pdv{V_\tau}{\sigma} - \frac{\tau V_\sigma}{\rho^3} \bigg) + \vu{e}_\sigma \vu{e}_z \frac{1}{\rho} \pdv{V_z}{\sigma} \\ &\quad\: + \vu{e}_\tau \vu{e}_\sigma \bigg( \frac{1}{\rho} \pdv{V_\sigma}{\tau} - \frac{\sigma V_\tau}{\rho^3} \bigg) + \vu{e}_\tau \vu{e}_\tau \bigg( \frac{1}{\rho} \pdv{V_\tau}{\tau} + \frac{\sigma V_\sigma}{\rho^3} \bigg) + \vu{e}_\tau \vu{e}_z \frac{1}{\rho} \pdv{V_z}{\tau} \\ &\quad\: + \vu{e}_z \vu{e}_\sigma \pdv{V_\sigma}{z} + \vu{e}_z \vu{e}_\tau \pdv{V_\tau}{z} + \vu{e}_z \vu{e}_z \pdv{V_z}{z} \end{aligned} } \end{aligned}$$ $$\begin{aligned} \boxed{ \begin{aligned} (\vb{U} \cdot \nabla) \vb{V} &= \quad \vu{e}_\sigma \bigg( \frac{U_\sigma}{\rho} \pdv{V_\sigma}{\sigma} + \frac{U_\tau}{\rho} \pdv{V_\sigma}{\tau} + U_z \pdv{V_\sigma}{z} + \frac{\tau}{\rho^3} U_\sigma V_\tau - \frac{\sigma}{\rho^3} U_\tau V_\tau \bigg) \\ &\quad\: + \vu{e}_\tau \bigg( \frac{U_\sigma}{\rho} \pdv{V_\tau}{\sigma} + \frac{U_\tau}{\rho} \pdv{V_\tau}{\tau} + U_z \pdv{V_\tau}{z} + \frac{\sigma}{\rho^3} U_\tau V_\sigma - \frac{\tau}{\rho^3} U_\sigma V_\sigma \bigg) \\ &\quad\: + \vu{e}_z \bigg( \frac{U_\sigma}{\rho} \pdv{V_z}{\sigma} + \frac{U_\tau}{\rho} \pdv{V_z}{\tau} + U_z \pdv{V_z}{z} \bigg) \end{aligned} } \end{aligned}$$ $$\begin{aligned} \boxed{ \begin{aligned} \nabla^2 \vb{V} &= \quad \vu{e}_\sigma \bigg( \frac{1}{\rho^2} \pdvn{2}{V_\sigma}{\sigma} + \frac{1}{\rho^2} \pdvn{2}{V_\sigma}{\tau} + \pdvn{2}{V_\sigma}{z} + \frac{2 \tau}{\rho^4} \pdv{V_\tau}{\sigma} - \frac{2 \sigma}{\rho^4} \pdv{V_\tau}{\tau} - \frac{V_\sigma}{\rho^4} \bigg) \\ &\quad\: + \vu{e}_\tau \bigg( \frac{1}{\rho^2} \pdvn{2}{V_\tau}{\sigma} + \frac{1}{\rho^2} \pdvn{2}{V_\tau}{\tau} + \pdvn{2}{V_\tau}{z} - \frac{2 \tau}{\rho^4} \pdv{V_\sigma}{\sigma} + \frac{2 \sigma}{\rho^4} \pdv{V_\sigma}{\tau} - \frac{V_\tau}{\rho^4} \bigg) \\ &\quad\: + \vu{e}_z \bigg( \frac{1}{\rho^2} \pdvn{2}{V_z}{\sigma} + \frac{1}{\rho^2} \pdvn{2}{V_z}{\tau} + \pdvn{2}{V_z}{z} \bigg) \end{aligned} } \end{aligned}$$ $$\begin{aligned} \boxed{ \begin{aligned} \nabla \cdot \overline{\overline{\mathbf{T}}} &= \vu{e}_\sigma \bigg( \frac{1}{\rho} \pdv{T_{\sigma \sigma}}{\sigma} + \frac{1}{\rho} \pdv{T_{\tau \sigma}}{\tau} + \pdv{T_{z \sigma}}{z} + \frac{\sigma T_{\sigma \sigma}}{\rho^3} + \frac{\tau T_{\sigma \tau}}{\rho^3} + \frac{\tau T_{\tau \sigma}}{\rho^3} - \frac{\sigma T_{\tau \tau}}{\rho^3} \bigg) \\ &+ \vu{e}_\tau \bigg( \frac{1}{\rho} \pdv{T_{\sigma \tau}}{\sigma} + \frac{1}{\rho} \pdv{T_{\tau \tau}}{\tau} + \pdv{T_{k \tau}}{z} - \frac{\tau T_{\sigma \sigma}}{\rho^3} + \frac{\sigma T_{\sigma \tau}}{\rho^3} + \frac{\sigma T_{\tau \sigma}}{\rho^3} + \frac{\tau T_{\tau \tau}}{\rho^3} \bigg) \\ &+ \vu{e}_z \bigg( \frac{1}{\rho} \pdv{T_{\sigma z}}{\sigma} + \frac{1}{\rho} \pdv{T_{\tau z}}{\tau} + \pdv{T_{zz}}{z} + \frac{\sigma T_{\sigma z}}{\rho^3} + \frac{\tau T_{\tau z}}{\rho^3} \bigg) \end{aligned} } \end{aligned}$$ ## References 1. M.L. Boas, *Mathematical methods in the physical sciences*, 2nd edition, Wiley.