--- title: "Parseval's theorem" sort_title: "Parseval's theorem" date: 2021-02-22 categories: - Mathematics - Physics layout: "concept" --- **Parseval's theorem** is a relation between the inner product of two functions $$f(x)$$ and $$g(x)$$, and the inner product of their [Fourier transforms](/know/concept/fourier-transform/) $$\tilde{f}(k)$$ and $$\tilde{g}(k)$$. There are two equivalent ways of stating it, where $$A$$, $$B$$, and $$s$$ are constants from the FT's definition: $$\begin{aligned} \boxed{ \begin{aligned} \Inprod{f(x)}{g(x)} &= \frac{2 \pi B^2}{|s|} \inprod{\tilde{f}(k)}{\tilde{g}(k)} \\ \inprod{\tilde{f}(k)}{\tilde{g}(k)} &= \frac{2 \pi A^2}{|s|} \Inprod{f(x)}{g(x)} \end{aligned} } \end{aligned}$$ {% include proof/start.html id="proof-fourier" -%} We insert the inverse FT into the defintion of the inner product: $$\begin{aligned} \Inprod{f}{g} &= \int_{-\infty}^\infty \big( \hat{\mathcal{F}}^{-1}\{\tilde{f}(k)\}\big)^* \: \hat{\mathcal{F}}^{-1}\{\tilde{g}(k)\} \dd{x} \\ &= B^2 \int \Big( \int \tilde{f}^*(k_1) \exp(i s k_1 x) \dd{k_1} \Big) \Big( \int \tilde{g}(k) \exp(- i s k x) \dd{k} \Big) \dd{x} \\ &= 2 \pi B^2 \iint \tilde{f}^*(k_1) \tilde{g}(k) \Big( \frac{1}{2 \pi} \int_{-\infty}^\infty \exp(i s x (k_1 - k)) \dd{x} \Big) \dd{k_1} \dd{k} \\ &= 2 \pi B^2 \iint \tilde{f}^*(k_1) \: \tilde{g}(k) \: \delta(s (k_1 - k)) \dd{k_1} \dd{k} \\ &= \frac{2 \pi B^2}{|s|} \int_{-\infty}^\infty \tilde{f}^*(k) \: \tilde{g}(k) \dd{k} = \frac{2 \pi B^2}{|s|} \inprod{\tilde{f}}{\tilde{g}} \end{aligned}$$ Where $$\delta(k)$$ is the [Dirac delta function](/know/concept/dirac-delta-function/). Note that we can equally well do this proof in the opposite direction, which yields an equivalent result: $$\begin{aligned} \inprod{\tilde{f}}{\tilde{g}} &= \int_{-\infty}^\infty \big( \hat{\mathcal{F}}\{f(x)\}\big)^* \: \hat{\mathcal{F}}\{g(x)\} \dd{k} \\ &= A^2 \int \Big( \int f^*(x_1) \exp(- i s k x_1) \dd{x_1} \Big) \Big( \int g(x) \exp(i s k x) \dd{x} \Big) \dd{k} \\ &= 2 \pi A^2 \iint f^*(x_1) g(x) \Big( \frac{1}{2 \pi} \int_{-\infty}^\infty \exp(i s k (x_1 - x)) \dd{k} \Big) \dd{x_1} \dd{x} \\ &= 2 \pi A^2 \iint f^*(x_1) \: g(x) \: \delta(s (x_1 - x)) \dd{x_1} \dd{x} \\ &= \frac{2 \pi A^2}{|s|} \int_{-\infty}^\infty f^*(x) \: g(x) \dd{x} = \frac{2 \pi A^2}{|s|} \Inprod{f}{g} \end{aligned}$$ {% include proof/end.html id="proof-fourier" %} For this reason, physicists like to define the Fourier transform with $$A\!=\!B\!=\!1 / \sqrt{2\pi}$$ and $$|s|\!=\!1$$, because then it nicely conserves the functions' normalization. ## References 1. O. Bang, *Applied mathematics for physicists: lecture notes*, 2019, unpublished.