--- title: "Polar cylindrical coordinates" sort_title: "Polar cylindrical coordinates" date: 2021-07-26 categories: - Mathematics - Physics layout: "concept" --- **Polar cylindrical coordinates** extend polar coordinates $$(r, \varphi)$$ to 3D, by describing the location of a point in space using the variables $$(r, \varphi, z)$$. The $$z$$-axis is unchanged from the Cartesian system, hence the name *cylindrical*. [Cartesian coordinates](/know/concept/cartesian-coordinates/) $$(x, y, z)$$ and the cylindrical system $$(r, \varphi, z)$$ are related by: $$\begin{aligned} \boxed{ \begin{aligned} x &= r \cos{\varphi} \\ y &= r \sin{\varphi} \\ z &= z \end{aligned} } \end{aligned}$$ Conversely, a point given in $$(x, y, z)$$ can be converted to $$(r, \varphi, z)$$ using these formulae, where $$\mathtt{atan2}$$ is the 2-argument arctangent, which is needed to handle the signs correctly: $$\begin{aligned} \boxed{ \begin{aligned} r &= \sqrt{x^2 + y^2} \\ \varphi &= \mathtt{atan2}(y, x) \\ z &= z \end{aligned} } \end{aligned}$$ Polar cylindrical coordinates form an [orthogonal curvilinear system](/know/concept/orthogonal-curvilinear-coordinates/), whose **scale factors** $$h_r$$, $$h_\varphi$$ and $$h_z$$ we need. To get those, we calculate the unnormalized local basis: $$\begin{aligned} h_r \vu{e}_r &= \vu{e}_x \pdv{x}{r} + \vu{e}_y \pdv{y}{r} + \vu{e}_z \pdv{z}{r} \\ &= \vu{e}_x \cos{\varphi} + \vu{e}_y \sin{\varphi} \\ h_\varphi \vu{e}_\varphi &= \vu{e}_x \pdv{x}{\varphi} + \vu{e}_y \pdv{y}{\varphi} + \vu{e}_z \pdv{z}{\varphi} \\ &= - \vu{e}_x \: r \sin{\varphi} + \vu{e}_y \: r \cos{\varphi} \\ h_z \vu{e}_z &= \vu{e}_x \pdv{x}{z} + \vu{e}_y \pdv{y}{z} + \vu{e}_z \pdv{z}{z} \\ &= \vu{e}_z \end{aligned}$$ By normalizing the **local basis vectors** $$\vu{e}_r$$, $$\vu{e}_\varphi$$ and $$\vu{e}_z$$, we arrive at these expressions: $$\begin{aligned} \boxed{ \begin{aligned} h_r &= 1 \\ h_\varphi &= r \\ h_z &= 1 \end{aligned} } \qquad\qquad \boxed{ \begin{aligned} \vu{e}_r &= \vu{e}_x \cos{\varphi} + \vu{e}_y \sin{\varphi} \\ \vu{e}_\varphi &= - \vu{e}_x \sin{\varphi} + \vu{e}_y \cos{\varphi} \\ \vu{e}_z &= \vu{e}_z \end{aligned} } \end{aligned}$$ Thanks to these scale factors, we can easily convert calculus from the Cartesian system using the standard formulae for orthogonal curvilinear coordinates. ## Differential elements For line integrals, the tangent vector element $$\dd{\vb{\ell}}$$ for a curve is as follows: $$\begin{aligned} \boxed{ \dd{\vb{\ell}} = \vu{e}_r \dd{r} + \: \vu{e}_\varphi \: r \dd{\varphi} + \: \vu{e}_z \dd{z} } \end{aligned}$$ For surface integrals, the normal vector element $$\dd{\vb{S}}$$ for a surface is given by: $$\begin{aligned} \boxed{ \dd{\vb{S}} = \vu{e}_r \: r \dd{\varphi} \dd{z} + \: \vu{e}_\varphi \dd{r} \dd{z} + \: \vu{e}_z \: r \dd{r} \dd{\varphi} } \end{aligned}$$ And for volume integrals, the infinitesimal volume $$\dd{V}$$ takes the following form: $$\begin{aligned} \boxed{ \dd{V} = r \dd{r} \dd{\varphi} \dd{z} } \end{aligned}$$ ## Common operations The basic vector operations (gradient, divergence, curl and Laplacian) are given by: $$\begin{aligned} \boxed{ \nabla f = \vu{e}_r \pdv{f}{r} + \vu{e}_\varphi \frac{1}{r} \pdv{f}{\varphi} + \mathbf{e}_z \pdv{f}{z} } \end{aligned}$$ $$\begin{aligned} \boxed{ \nabla \cdot \vb{V} = \pdv{V_r}{r} + \frac{V_r}{r} + \frac{1}{r} \pdv{V_\varphi}{\varphi} + \pdv{V_z}{z} } \end{aligned}$$ $$\begin{aligned} \boxed{ \begin{aligned} \nabla \times \vb{V} &= \quad \vu{e}_r \bigg( \frac{1}{r} \pdv{V_z}{\varphi} - \pdv{V_\varphi}{z} \bigg) \\ &\quad\: + \vu{e}_\varphi \bigg( \pdv{V_r}{z} - \pdv{V_z}{r} \bigg) \\ &\quad\: + \vu{e}_z \bigg( \pdv{V_\varphi}{r} + \frac{V_\varphi}{r} - \frac{1}{r} \pdv{V_r}{\varphi} \bigg) \end{aligned} } \end{aligned}$$ $$\begin{aligned} \boxed{ \nabla^2 f = \pdvn{2}{f}{r} + \frac{1}{r} \pdv{f}{r} + \frac{1}{r^2} \pdvn{2}{f}{\varphi} + \pdvn{2}{f}{z} } \end{aligned}$$ ## Uncommon operations Uncommon operations include: the gradient of a divergence $$\nabla (\nabla \cdot \vb{V})$$, the gradient of a vector $$\nabla \vb{V}$$, the advection of a vector $$(\vb{U} \cdot \nabla) \vb{V}$$ with respect to $$\vb{U}$$, the Laplacian of a vector $$\nabla^2 \vb{V}$$, and the divergence of a 2nd-order tensor $$\nabla \cdot \overline{\overline{\vb{T}}}$$: $$\begin{aligned} \boxed{ \begin{aligned} \nabla (\nabla \cdot \vb{V}) &= \quad \vu{e}_r \bigg( \pdvn{2}{V_r}{r} + \frac{1}{r} \mpdv{V_\varphi}{r}{\varphi} + \mpdv{V_z}{r}{z} + \frac{1}{r} \pdv{V_r}{r} - \frac{1}{r^2} \pdv{V_\varphi}{\varphi} - \frac{V_r}{r^2} \bigg) \\ &\quad\: + \vu{e}_\varphi \bigg( \frac{1}{r} \mpdv{V_r}{\varphi}{r} + \frac{1}{r^2} \pdvn{2}{V_\varphi}{\varphi} + \frac{1}{r} \mpdv{V_z}{\varphi}{z} + \frac{1}{r^2} \pdv{V_r}{\varphi} \bigg) \\ &\quad\: + \vu{e}_z \bigg( \mpdv{V_r}{z}{r} + \frac{1}{r} \mpdv{V_\varphi}{z}{\varphi} + \pdvn{2}{V_z}{z} + \frac{1}{r} \pdv{V_r}{z} \bigg) \end{aligned} } \end{aligned}$$ $$\begin{aligned} \boxed{ \begin{aligned} \nabla \vb{V} &= \quad \vu{e}_r \vu{e}_r \pdv{V_r}{r} + \vu{e}_r \vu{e}_\varphi \pdv{V_\varphi}{r} + \vu{e}_r \vu{e}_z \pdv{V_z}{r} \\ &\quad\: + \vu{e}_\varphi \vu{e}_r \bigg( \frac{1}{r} \pdv{V_r}{\varphi} - \frac{V_\varphi}{r} \bigg) + \vu{e}_\varphi \vu{e}_\varphi \bigg( \frac{1}{r} \pdv{V_\varphi}{\varphi} + \frac{V_r}{r} \bigg) + \vu{e}_\varphi \vu{e}_z \frac{1}{r} \pdv{V_z}{\varphi} \\ &\quad\: + \vu{e}_z \vu{e}_r \pdv{V_r}{z} + \vu{e}_z \vu{e}_\varphi \pdv{V_\varphi}{z} + \vu{e}_z \vu{e}_z \pdv{V_z}{z} \end{aligned} } \end{aligned}$$ $$\begin{aligned} \boxed{ \begin{aligned} (\vb{U} \cdot \nabla) \vb{V} &= \quad \vu{e}_r \bigg( U_r \pdv{V_r}{r} + \frac{U_\varphi}{r} \pdv{V_r}{\varphi} + U_z \pdv{V_r}{z} - \frac{U_\varphi V_\varphi}{r} \bigg) \\ &\quad\: + \vu{e}_\varphi \bigg( U_r \pdv{V_\varphi}{r} + \frac{U_\varphi}{r} \pdv{V_\varphi}{\varphi} + U_z \pdv{V_\varphi}{z} + \frac{U_\varphi V_r}{r} \bigg) \\ &\quad\: + \vu{e}_z \bigg( U_r \pdv{V_z}{r} + \frac{U_\varphi}{r} \pdv{V_z}{\varphi} + U_z \pdv{V_z}{z} \bigg) \end{aligned} } \end{aligned}$$ $$\begin{aligned} \boxed{ \begin{aligned} \nabla^2 \vb{V} &= \quad \vu{e}_r \bigg( \pdvn{2}{V_r}{r} + \frac{1}{r^2} \pdvn{2}{V_r}{\varphi} + \pdvn{2}{V_r}{z} + \frac{1}{r} \pdv{V_r}{r} - \frac{2}{r^2} \pdv{V_\varphi}{\varphi} - \frac{V_r}{r^2} \bigg) \\ &\quad\: + \vu{e}_\varphi \bigg( \pdvn{2}{V_\varphi}{r} + \frac{1}{r^2} \pdvn{2}{V_\varphi}{\varphi} + \pdvn{2}{V_\varphi}{z} + \frac{2}{r^2} \pdv{V_r}{\varphi} + \frac{1}{r} \pdv{V_\varphi}{r} - \frac{V_\varphi}{r^2} \bigg) \\ &\quad\: + \vu{e}_z \bigg( \pdvn{2}{V_z}{r} + \frac{1}{r^2} \pdvn{2}{V_z}{\varphi} + \pdvn{2}{V_z}{z} + \frac{1}{r} \pdv{V_z}{r} \bigg) \end{aligned} } \end{aligned}$$ $$\begin{aligned} \boxed{ \begin{aligned} \nabla \cdot \overline{\overline{\mathbf{T}}} &= \quad \vu{e}_r \bigg( \pdv{T_{rr}}{r} + \frac{1}{r} \pdv{T_{\varphi r}}{\varphi} + \pdv{T_{zr}}{z} + \frac{T_{rr}}{r} - \frac{T_{\varphi \varphi}}{r} \bigg) \\ &\quad\: + \vu{e}_\varphi \bigg( \pdv{T_{r \varphi}}{r} + \frac{1}{r} \pdv{T_{\varphi \varphi}}{\varphi} + \pdv{T_{z \varphi}}{z} + \frac{T_{r \varphi}}{r} + \frac{T_{\varphi r}}{r} \bigg) \\ &\quad\: + \vu{e}_z \bigg( \pdv{T_{rz}}{r} + \frac{1}{r} \pdv{T_{\varphi z}}{\varphi} + \pdv{T_{zz}}{z} + \frac{T_{rz}}{r} \bigg) \end{aligned} } \end{aligned}$$ ## References 1. M.L. Boas, *Mathematical methods in the physical sciences*, 2nd edition, Wiley. 2. B. Lautrup, *Physics of continuous matter: exotic and everyday phenomena in the macroscopic world*, 2nd edition, CRC Press.