--- title: "Propagator" sort_title: "Propagator" date: 2021-07-04 categories: - Physics - Quantum mechanics layout: "concept" --- In quantum mechanics, the **propagator** $$K(x_f, t_f; x_i, t_i)$$ gives the probability amplitude that a particle starting at $$x_i$$ at $$t_i$$ ends up at position $$x_f$$ at $$t_f$$. It is defined as follows: $$\begin{aligned} \boxed{ K(x_f, t_f; x_i, t_i) \equiv \matrixel{x_f}{\hat{U}(t_f, t_i)}{x_i} } \end{aligned}$$ Where $$\hat{U} \equiv \exp(- i t \hat{H} / \hbar)$$ is the time-evolution operator. The probability that a particle travels from $$(x_i, t_i)$$ to $$(x_f, t_f)$$ is then given by: $$\begin{aligned} P &= \big| K(x_f, t_f; x_i, t_i) \big|^2 \end{aligned}$$ Given a general (i.e. non-collapsed) initial state $$\psi_i(x) \equiv \psi(x, t_i)$$, we must integrate over $$x_i$$: $$\begin{aligned} P &= \bigg| \int_{-\infty}^\infty K(x_f, t_f; x_i, t_i) \: \psi_i(x_i) \dd{x_i} \bigg|^2 \end{aligned}$$ And if the final state $$\psi_f(x) \equiv \psi(x, t_f)$$ is not a basis vector either, then we integrate twice: $$\begin{aligned} P &= \bigg| \iint_{-\infty}^\infty \psi_f^*(x_f) \: K(x_f, t_f; x_i, t_i) \: \psi_i(x_i) \dd{x_i} \dd{x_f} \bigg|^2 \end{aligned}$$ Given a $$\psi_i(x)$$, the propagator can also be used to find the full final wave function: $$\begin{aligned} \boxed{ \psi(x_f, t_f) = \int_{-\infty}^\infty \psi_i(x_i) K(x_f, t_f; x_i, t_i) \:dx_i } \end{aligned}$$ Sometimes the name "propagator" is also used to refer to the [fundamental solution](/know/concept/fundamental-solution/) $$G$$ of the time-dependent Schrödinger equation, which is related to $$K$$ by: $$\begin{aligned} \boxed{ G(x_f, t_f; x_i, t_i) = - \frac{i}{\hbar} \: \Theta(t_f - t_i) \: K(x_f, t_f; x_i, t_i) } \end{aligned}$$ Where $$\Theta(t)$$ is the [Heaviside step function](/know/concept/heaviside-step-function/).