--- title: "Rabi oscillation" date: 2021-09-22 categories: - Physics - Quantum mechanics - Two-level system - Optics layout: "concept" --- In quantum mechanics, from the derivation of [time-dependent perturbation theory](/know/concept/time-dependent-perturbation-theory/), we know that a time-dependent term $\hat{H}_1$ in the Hamiltonian affects the state as follows, where $c_n(t)$ are the coefficients of the linear combination of basis states $\Ket{n} \exp(-i E_n t / \hbar)$: $$\begin{aligned} i \hbar \dv{c_m}{t} = \sum_{n} c_n(t) \matrixel{m}{\hat{H}_1}{n} \exp(i \omega_{mn} t) \end{aligned}$$ Where $\omega_{mn} \equiv (E_m \!-\! E_n) / \hbar$ for energies $E_m$ and $E_n$. Note that this equation is exact, despite being used for deriving perturbation theory. Consider a two-level system where $n \in \{a, b\}$, in which case the above equation can be expanded to the following: $$\begin{aligned} \dv{c_a}{t} &= - \frac{i}{\hbar} \matrixel{a}{\hat{H}_1}{b} \exp(- i \omega_0 t) \: c_b - \frac{i}{\hbar} \matrixel{a}{\hat{H}_1}{a} \: c_a \\ \dv{c_b}{t} &= - \frac{i}{\hbar} \matrixel{b}{\hat{H}_1}{a} \exp(i \omega_0 t) \: c_a - \frac{i}{\hbar} \matrixel{b}{\hat{H}_1}{b} \: c_b \end{aligned}$$ Where $\omega_0 \equiv \omega_{ba}$ is positive. We assume that $\hat{H}_1$ has odd spatial parity, in which case [Laporte's selection rule](/know/concept/selection-rules/) states that the diagonal matrix elements vanish, leaving: $$\begin{aligned} \dv{c_a}{t} &= - \frac{i}{\hbar} \matrixel{a}{\hat{H}_1}{b} \exp(- i \omega_0 t) \: c_b \\ \dv{c_b}{t} &= - \frac{i}{\hbar} \matrixel{b}{\hat{H}_1}{a} \exp(i \omega_0 t) \: c_a \end{aligned}$$ We now choose $\hat{H}_1$ to be as follows, sinusoidally oscillating with a spatially odd $V(\vec{r})$: $$\begin{aligned} \hat{H}_1(t) = V \cos(\omega t) = \frac{V}{2} \Big( \exp(i \omega t) + \exp(-i \omega t) \Big) \end{aligned}$$ We insert this into the equations for $c_a$ and $c_b$, and define $V_{ab} \equiv \matrixel{a}{V}{b}$, leading us to: $$\begin{aligned} \dv{c_a}{t} &= - i \frac{V_{ab}}{2 \hbar} \Big( \exp\!\big(i (\omega \!-\! \omega_0) t\big) + \exp\!\big(\!-\! i (\omega \!+\! \omega_0) t\big) \Big) \: c_b \\ \dv{c_b}{t} &= - i \frac{V_{ab}}{2 \hbar} \Big( \exp\!\big(i (\omega \!+\! \omega_0) t\big) + \exp\!\big(\!-\! i (\omega \!-\! \omega_0) t\big) \Big) \: c_a \end{aligned}$$ Here, we make the [rotating wave approximation](/know/concept/rotating-wave-approximation/): assuming we are close to resonance $\omega \approx \omega_0$, we argue that $\exp(i (\omega \!+\! \omega_0) t)$ oscillates so fast that its effect is negligible when the system is observed over a reasonable time interval. Dropping those terms leaves us with: $$\begin{aligned} \boxed{ \begin{aligned} \dv{c_a}{t} &= - i \frac{V_{ab}}{2 \hbar} \exp\!\big(i (\omega \!-\! \omega_0) t \big) \: c_b \\ \dv{c_b}{t} &= - i \frac{V_{ba}}{2 \hbar} \exp\!\big(\!-\! i (\omega \!-\! \omega_0) t \big) \: c_a \end{aligned} } \end{aligned}$$ Now we can solve this system of coupled equations exactly. We differentiate the first equation with respect to $t$, and then substitute $\idv{c_b}{t}$ for the second equation: $$\begin{aligned} \dvn{2}{c_a}{t} &= - i \frac{V_{ab}}{2 \hbar} \bigg( i (\omega - \omega_0) \: c_b + \dv{c_b}{t} \bigg) \exp\!\big(i (\omega \!-\! \omega_0) t \big) \\ &= - i \frac{V_{ab}}{2 \hbar} \bigg( i (\omega - \omega_0) \: c_b - i \frac{V_{ba}}{2 \hbar} \exp\!\big(\!-\! i (\omega \!-\! \omega_0) t \big) \: c_a \bigg) \exp\!\big(i (\omega \!-\! \omega_0) t \big) \\ &= \frac{V_{ab}}{2 \hbar} (\omega - \omega_0) \exp\!\big(i (\omega \!-\! \omega_0) t \big) \: c_b - \frac{|V_{ab}|^2}{(2 \hbar)^2} c_a \end{aligned}$$ In the first term, we recognize $\idv{c_a}{t}$, which we insert to arrive at an equation for $c_a(t)$: $$\begin{aligned} 0 = \dvn{2}{c_a}{t} - i (\omega - \omega_0) \dv{c_a}{t} + \frac{|V_{ab}|^2}{(2 \hbar)^2} \: c_a \end{aligned}$$ To solve this, we make the ansatz $c_a(t) = \exp(\lambda t)$, which, upon insertion, gives us: $$\begin{aligned} 0 = \lambda^2 - i (\omega - \omega_0) \lambda + \frac{|V_{ab}|^2}{(2 \hbar)^2} \end{aligned}$$ This quadratic equation has two complex roots $\lambda_1$ and $\lambda_2$, which are found to be: $$\begin{aligned} \lambda_1 = i \frac{\omega - \omega_0 + \tilde{\Omega}}{2} \qquad \quad \lambda_2 = i \frac{\omega - \omega_0 - \tilde{\Omega}}{2} \end{aligned}$$ Where we have defined the **generalized Rabi frequency** $\tilde{\Omega}$ to be given by: $$\begin{aligned} \boxed{ \tilde{\Omega} \equiv \sqrt{(\omega - \omega_0)^2 + \frac{|V_{ab}|^2}{\hbar^2}} } \end{aligned}$$ So that the general solution $c_a(t)$ is as follows, where $A$ and $B$ are arbitrary constants, to be determined from initial conditions (and normalization): $$\begin{aligned} \boxed{ c_a(t) = \Big( A \sin(\tilde{\Omega} t / 2) + B \cos(\tilde{\Omega} t / 2) \Big) \exp\!\big(i (\omega \!-\! \omega_0) t / 2 \big) } \end{aligned}$$ And then the corresponding $c_b(t)$ can be found from the coupled equation we started at, or, if we only care about the probability density $|c_a|^2$, we can use $|c_b|^2 = 1 - |c_a|^2$. For example, if $A = 0$ and $B = 1$, we get the following probabilities $$\begin{aligned} |c_a(t)|^2 &= \cos^2(\tilde{\Omega} t / 2) = \frac{1}{2} \Big( 1 + \cos(\tilde{\Omega} t) \Big) \\ |c_b(t)|^2 &= \sin^2(\tilde{\Omega} t / 2) = \frac{1}{2} \Big( 1 - \cos(\tilde{\Omega} t) \Big) \end{aligned}$$ Note that the period was halved by squaring. This periodic "flopping" of the particle between $\Ket{a}$ and $\Ket{b}$ is known as **Rabi oscillation**, **Rabi flopping** or the **Rabi cycle**. This is a more accurate treatment of the flopping found from first-order perturbation theory. The name **generalized Rabi frequency** suggests that there is a non-general version. Indeed, the **Rabi frequency** $\Omega$ is based on the special case of exact resonance $\omega = \omega_0$: $$\begin{aligned} \Omega \equiv \frac{V_{ba}}{\hbar} \end{aligned}$$ As an example, Rabi oscillation arises in the [electric dipole approximation](/know/concept/electric-dipole-approximation/), where $\hat{H}_1$ is: $$\begin{aligned} \hat{H}_1(t) = - q \vec{r} \cdot \vec{E}_0 \cos(\omega t) \end{aligned}$$ After making the rotating wave approximation, the resulting Rabi frequency is given by: $$\begin{aligned} \Omega = - \frac{\vec{d} \cdot \vec{E}_0}{\hbar} \end{aligned}$$ Where $\vec{E}_0$ is the [electric field](/know/concept/electric-field/) amplitude, and $\vec{d} \equiv q \matrixel{b}{\vec{r}}{a}$ is the transition dipole moment of the electron between orbitals $\Ket{a}$ and $\Ket{b}$. Apparently, some authors define $\vec{d}$ with the opposite sign, thereby departing from its classical interpretation. ## References 1. D.J. Griffiths, D.F. Schroeter, *Introduction to quantum mechanics*, 3rd edition, Cambridge.