--- title: "Selection rules" sort_title: "Selection rules" date: 2021-06-02 categories: - Physics - Quantum mechanics layout: "concept" --- In quantum mechanics, it is often necessary to evaluate matrix elements of the following form, where $$\ell$$ and $$m$$ respectively represent the total angular momentum and its $$z$$-component: $$\begin{aligned} \matrixel{f}{\hat{O}}{i} = \matrixel{\ell_f m_f}{\hat{O}}{\ell_i m_i} \end{aligned}$$ Where $$\hat{O}$$ is an operator, $$\Ket{i}$$ is an initial state, and $$\Ket{f}$$ is a final state (usually at least; $$\Ket{i}$$ and $$\Ket{f}$$ can be any states). **Selection rules** are requirements on the relations between $$\ell_i$$, $$\ell_f$$, $$m_i$$ and $$m_f$$, which, if not met, guarantee that the above matrix element is zero. ## Parity rules Let $$\hat{O}$$ denote any operator which is odd under spatial inversion (parity): $$\begin{aligned} \hat{\Pi}^\dagger \hat{O} \hat{\Pi} = - \hat{O} \end{aligned}$$ Where $$\hat{\Pi}$$ is the parity operator. We wrap this property of $$\hat{O}$$ in the states $$\Ket{\ell_f m_f}$$ and $$\Ket{\ell_i m_i}$$: $$\begin{aligned} \matrixel{\ell_f m_f}{\hat{O}}{\ell_i m_i} &= - \matrixel{\ell_f m_f}{\hat{\Pi}^\dagger \hat{O} \hat{\Pi}}{\ell_i m_i} \\ &= - \matrixel{\ell_f m_f}{(-1)^{\ell_f} \hat{O} (-1)^{\ell_i}}{\ell_i m_i} \\ &= (-1)^{\ell_f + \ell_i + 1} \matrixel{\ell_f m_f}{\hat{O}}{\ell_i m_i} \end{aligned}$$ Which clearly can only be true if the exponent is even, so $$\Delta \ell \equiv \ell_f - \ell_i$$ must be odd. This leads to the following selection rule, often referred to as **Laporte's rule**: $$\begin{aligned} \boxed{ \Delta \ell \:\:\text{is odd} } \end{aligned}$$ If this is not the case, then the only possible way that the above equation can be satisfied is if the matrix element vanishes $$\matrixel{\ell_f m_f}{\hat{O}}{\ell_i m_i} = 0$$. We can derive an analogous rule for any operator $$\hat{E}$$ which is even under parity: $$\begin{aligned} \hat{\Pi}^\dagger \hat{E} \hat{\Pi} = \hat{E} \quad \implies \quad \boxed{ \Delta \ell \:\:\text{is even} } \end{aligned}$$ ## Dipole rules Arguably the most common operator found in such matrix elements is a position vector operator, like $$\vu{r}$$ or $$\hat{x}$$, and the associated selection rules are known as **dipole rules**. For the $$z$$-component of angular momentum $$m$$ we have the following: $$\begin{aligned} \boxed{ \Delta m = 0 \:\:\mathrm{or}\: \pm 1 } \end{aligned}$$ {% include proof/start.html id="proof-dipole-m" -%} We know that the angular momentum $$z$$-component operator $$\hat{L}_z$$ satisfies: $$\begin{aligned} \comm{\hat{L}_z}{\hat{x}} = i \hbar \hat{y} \qquad \comm{\hat{L}_z}{\hat{y}} = - i \hbar \hat{x} \qquad \comm{\hat{L}_z}{\hat{z}} = 0 \end{aligned}$$ We take the first relation, and wrap it in $$\Bra{\ell_f m_f}$$ and $$\Ket{\ell_i m_i}$$, giving: $$\begin{aligned} i \hbar \matrixel{\ell_f m_f}{\hat{y}}{\ell_i m_i} &= \matrixel{\ell_f m_f}{\hat{L}_z \hat{x}}{\ell_i m_i} - \matrixel{\ell_f m_f}{\hat{x} \hat{L}_z}{\ell_i m_i} \\ &= \hbar m_f \matrixel{\ell_f m_f}{\hat{x}}{\ell_i m_i} - \hbar m_i \matrixel{\ell_f m_f}{\hat{x}}{\ell_i m_i} \\ &= \hbar (m_f - m_i) \matrixel{\ell_f m_f}{\hat{x}}{\ell_i m_i} \end{aligned}$$ Next, we do the same thing with the second relation, for $$[\hat{L}_z, \hat{y}]$$, giving: $$\begin{aligned} - i \hbar \matrixel{\ell_f m_f}{\hat{x}}{\ell_i m_i} &= \matrixel{\ell_f m_f}{\hat{L}_z \hat{y}}{\ell_i m_i} - \matrixel{\ell_f m_f}{\hat{y} \hat{L}_z}{\ell_i m_i} \\ &= \hbar m_f \matrixel{\ell_f m_f}{\hat{y}}{\ell_i m_i} - \hbar m_i \matrixel{\ell_f m_f}{\hat{y}}{\ell_i m_i} \\ &= \hbar (m_f - m_i) \matrixel{\ell_f m_f}{\hat{y}}{\ell_i m_i} \end{aligned}$$ Respectively isolating the two above results for $$\hat{x}$$ and $$\hat{y}$$, we arrive at these equations: $$\begin{aligned} \matrixel{\ell_f m_f}{\hat{x}}{\ell_i m_i} &= i (m_f - m_i) \matrixel{\ell_f m_f}{\hat{y}}{\ell_i m_i} \\ \matrixel{\ell_f m_f}{\hat{y}}{\ell_i m_i} &= - i (m_f - m_i) \matrixel{\ell_f m_f}{\hat{x}}{\ell_i m_i} \end{aligned}$$ By inserting the first into the second, we find (part of) the selection rule: $$\begin{aligned} \matrixel{\ell_f m_f}{\hat{y}}{\ell_i m_i} &= (m_f - m_i)^2 \matrixel{\ell_f m_f}{\hat{y}}{\ell_i m_i} \end{aligned}$$ This can only be true if $$\Delta m = \pm 1$$, unless the inner products of $$\hat{x}$$ and $$\hat{y}$$ are zero, in which case we cannot say anything about $$\Delta m$$ yet. Assuming the latter, we take the inner product of the commutator $$\comm{\hat{L}_z}{\hat{z}} = 0$$, and find: $$\begin{aligned} 0 &= \matrixel{\ell_f m_f}{\hat{L}_z \hat{z}}{\ell_i m_i} - \matrixel{\ell_f m_f}{\hat{z} \hat{L}_z}{\ell_i m_i} \\ &= \hbar m_f \matrixel{\ell_f m_f}{\hat{z}}{\ell_i m_i} - \hbar m_i \matrixel{\ell_f m_f}{\hat{z}}{\ell_i m_i} \\ &= \hbar (m_f - m_i) \matrixel{\ell_f m_f}{\hat{z}}{\ell_i m_i} \end{aligned}$$ If $$\matrixel{f}{\hat{z}}{i} \neq 0$$, we require $$\Delta m = 0$$. The previous requirement was $$\Delta m = \pm 1$$, implying that $$\matrixel{f}{\hat{x}}{i} = \matrixel{f}{\hat{y}}{i} = 0$$ whenever $$\matrixel{f}{\hat{z}}{i} \neq 0$$. Only if $$\matrixel{f}{\hat{z}}{i} = 0$$ does the previous rule $$\Delta m = \pm 1$$ hold, in which case the inner products of $$\hat{x}$$ and $$\hat{y}$$ are nonzero. {% include proof/end.html id="proof-dipole-m" %} Meanwhile, for the total angular momentum $$\ell$$ we have the following: $$\begin{aligned} \boxed{ \Delta \ell = \pm 1 } \end{aligned}$$ {% include proof/start.html id="proof-dipole-l" -%} We start from the following relation (which is already quite a chore to prove): $$\begin{aligned} \Comm{\hat{L}^2}{\comm{\hat{L}^2}{\vu{r}}} = 2 \hbar^2 (\vu{r} \hat{L}^2 + \hat{L}^2 \vu{r}) \end{aligned}$$ {% include proof/start.html id="proof-dipole-l-commutator" -%} To begin with, we want to find the commutator of $$\hat{L}^2$$ and $$\hat{x}$$: $$\begin{aligned} \comm{\hat{L}^2}{\hat{x}} &= \comm{\hat{L}_x^2}{\hat{x}} + \comm{\hat{L}_y^2}{\hat{x}} + \comm{\hat{L}_z^2}{\hat{x}} = \comm{\hat{L}_y^2}{\hat{x}} + \comm{\hat{L}_z^2}{\hat{x}} \\ &= \hat{L}_y \comm{\hat{L}_y}{\hat{x}} + \comm{\hat{L}_y}{\hat{x}} \hat{L}_y + \hat{L}_z \comm{\hat{L}_z}{\hat{x}} + \comm{\hat{L}_z}{\hat{x}} \hat{L}_z \end{aligned}$$ Evaluating these commutators gives us: $$\begin{aligned} \comm{\hat{L}_y}{\hat{x}} &= \comm{\hat{z} \hat{p}_x}{\hat{x}} - \comm{\hat{x} \hat{p}_z}{\hat{x}} = \hat{z} \comm{\hat{p}_x}{\hat{x}} + \comm{\hat{z}}{\hat{x}} \hat{p}_x - \hat{x} \comm{\hat{p}_z}{\hat{x}} - \comm{\hat{x}}{\hat{x}} \hat{p}_z = - i \hbar \hat{z} \\ \comm{\hat{L}_z}{\hat{x}} &= \comm{\hat{x} \hat{p}_y}{\hat{x}} - \comm{\hat{y} \hat{p}_x}{\hat{x}} = \hat{x} \comm{\hat{p}_y}{\hat{x}} + \comm{\hat{x}}{\hat{x}} \hat{p}_y - \hat{y} \comm{\hat{p}_x}{\hat{x}} - \comm{\hat{y}}{\hat{x}} \hat{p}_x = i \hbar \hat{y} \end{aligned}$$ Which we then insert back into the original equation, yielding: $$\begin{aligned} \comm{\hat{L}^2}{\hat{x}} &= i \hbar (- \hat{L}_y \hat{z} - \hat{z} \hat{L}_y + \hat{L}_z \hat{y} + \hat{y} \hat{L}_z) \end{aligned}$$ This can be simplified by introducing some more commutators: $$\begin{aligned} \comm{\hat{L}^2}{\hat{x}} &= i \hbar \big( \!-\! ( \comm{\hat{L}_y}{\hat{z}} + \hat{z} \hat{L}_y ) - \hat{z} \hat{L}_y + ( \comm{\hat{L}_z}{\hat{y}} + \hat{y} \hat{L}_z ) + \hat{y} \hat{L}_z \big) \end{aligned}$$ Evaluating these commutators gives us: $$\begin{aligned} \comm{\hat{L}_y}{\hat{z}} &= \comm{\hat{z} \hat{p}_x}{\hat{z}} - \comm{\hat{x} \hat{p}_z}{\hat{z}} = \hat{z} \comm{\hat{p}_x}{\hat{z}} + \comm{\hat{z}}{\hat{z}} \hat{p}_x - \hat{x} \comm{\hat{p}_z}{\hat{z}} - \comm{\hat{x}}{\hat{z}} \hat{p}_z = i \hbar \hat{x} \\ \comm{\hat{L}_z}{\hat{y}} &= \comm{\hat{x} \hat{p}_y}{\hat{y}} - \comm{\hat{y} \hat{p}_x}{\hat{y}} = \hat{x} \comm{\hat{p}_y}{\hat{y}} + \comm{\hat{x}}{\hat{y}} \hat{p}_y - \hat{y} \comm{\hat{p}_x}{\hat{y}} - \comm{\hat{y}}{\hat{y}} \hat{p}_x = - i \hbar \hat{x} \end{aligned}$$ Substituting these then leads us to the first milestone of this proof: $$\begin{aligned} \comm{\hat{L}^2}{\hat{x}} &= i \hbar \big( \!-\! i \hbar \hat{x} - \hat{z} \hat{L}_y - \hat{z} \hat{L}_y - i \hbar \hat{x} + \hat{y} \hat{L}_z + \hat{y} \hat{L}_z \big) \\ &= 2 i \hbar (\hat{y} \hat{L}_z - \hat{z} \hat{L}_y - i \hbar \hat{x}) \end{aligned}$$ Repeating this process for $$\comm{\hat{L}^2}{\hat{y}}$$ and $$\comm{\hat{L}^2}{\hat{z}}$$, we find analogous expressions: $$\begin{aligned} \comm{\hat{L}^2}{\hat{y}} &= 2 i \hbar (\hat{z} \hat{L}_x - \hat{x} \hat{L}_z - i \hbar \hat{y}) \\ \comm{\hat{L}^2}{\hat{z}} &= 2 i \hbar (\hat{x} \hat{L}_y - \hat{y} \hat{L}_x - i \hbar \hat{z}) \end{aligned}$$ Next, we take the commutator with $$\hat{L}^2$$ of the commutator we just found: $$\begin{aligned} \comm{\hat{L}^2}{\comm{\hat{L}^2}{\hat{x}}} &= 2 i \hbar \big(\comm{\hat{L}^2}{\hat{y} \hat{L}_z} - \comm{\hat{L}^2}{\hat{z} \hat{L}_y} - i \hbar \comm{\hat{L}^2}{\hat{x}}\big) \\ &= 2 i \hbar \big( \hat{y} \comm{\hat{L}^2}{\hat{L}_z} + \comm{\hat{L}^2}{\hat{y}} \hat{L}_z - \hat{z} \comm{\hat{L}^2}{\hat{L}_y} - \comm{\hat{L}^2}{\hat{z}} \hat{L}_y - i \hbar \comm{\hat{L}^2}{\hat{x}} \big) \end{aligned}$$ Where we used that $$\comm{\hat{L}^2}{\hat{L}_y} = \comm{\hat{L}^2}{\hat{L}_z} = 0$$. The other commutators look familiar: $$\begin{aligned} \comm{\hat{L}^2}{\comm{\hat{L}^2}{\hat{x}}} &= 2 i \hbar \big( \comm{\hat{L}^2}{\hat{y}} \hat{L}_z - \comm{\hat{L}^2}{\hat{z}} \hat{L}_y - i \hbar \comm{\hat{L}^2}{\hat{x}} \big) \end{aligned}$$ By inserting the expressions we found earlier for these commutators, we get: $$\begin{aligned} \comm{\hat{L}^2}{\comm{\hat{L}^2}{\hat{x}}} &= - 4 \hbar^2 \big( \hat{z} \hat{L}_x \hat{L}_z - \hat{x} \hat{L}_z^2 - i \hbar \hat{y} \hat{L}_z + \hat{y} \hat{L}_x \hat{L}_y - \hat{x} \hat{L}_y^2 + i \hbar \hat{z} \hat{L}_y \big) \\ &\qquad\qquad + 2 \hbar^2 \big( \hat{L}^2 \hat{x} - \hat{x} \hat{L}^2 \big) \end{aligned}$$ Substituting the well-known commutators $$i \hbar \hat{L}_y = \comm{\hat{L}_z}{\hat{L}_x}$$ and $$i \hbar \hat{L}_z = \comm{\hat{L}_x}{\hat{L}_y}$$: $$\begin{aligned} \comm{\hat{L}^2}{\comm{\hat{L}^2}{\hat{x}}} &= - 4 \hbar^2 \big( \hat{z} \hat{L}_x \hat{L}_z + \hat{y} \hat{L}_x \hat{L}_y - \hat{x} \hat{L}_y^2 - \hat{x} \hat{L}_z^2 + \hat{z} \comm{\hat{L}_z}{\hat{L}_x} - \hat{y} \comm{\hat{L}_x}{\hat{L}_y} \big) \\ &\qquad\qquad + 2 \hbar^2 \big( \hat{L}^2 \hat{x} - \hat{x} \hat{L}^2 \big) \\ &= - 4 \hbar^2 \big( \hat{z} \hat{L}_z \hat{L}_x + \hat{y} \hat{L}_y \hat{L}_x - \hat{x} \hat{L}_y^2 - \hat{x} \hat{L}_z^2 \big) + 2 \hbar^2 \big( \hat{L}^2 \hat{x} - \hat{x} \hat{L}^2 \big) \end{aligned}$$ By definition, $$\hat{L}_x^2 + \hat{L}_y^2 + \hat{L}_z^2 = \hat{L}^2$$, which we use to arrive at: $$\begin{aligned} \comm{\hat{L}^2}{\comm{\hat{L}^2}{\hat{x}}} &= - 4 \hbar^2 \big( \hat{z} \hat{L}_z \hat{L}_x + \hat{y} \hat{L}_y \hat{L}_x + \hat{x} \hat{L}_x^2 - \hat{x} \hat{L}^2 \big) + 2 \hbar^2 \big( \hat{L}^2 \hat{x} - \hat{x} \hat{L}^2 \big) \\ &= - 4 \hbar^2 \big( \hat{z} \hat{L}_z \hat{L}_x + \hat{y} \hat{L}_y \hat{L}_x + \hat{x} \hat{L}_x^2 \big) + 2 \hbar^2 \big( \hat{L}^2 \hat{x} + \hat{x} \hat{L}^2 \big) \end{aligned}$$ The second term is what we want to prove, so the first term must vanish: $$\begin{aligned} \hat{z} \hat{L}_z \hat{L}_x + \hat{y} \hat{L}_y \hat{L}_x + \hat{x} \hat{L}_x^2 = (\vu{r} \cdot \vu{L}) \hat{L}_x = (\vu{r} \cdot (\vu{r} \cross \vu{p})) \hat{L}_x = (\vu{p} \cdot (\vu{r} \cross \vu{r})) \hat{L}_x = 0 \end{aligned}$$ Where $$\vu{L} = \vu{r} \cross \vu{p}$$ by definition, and the cross product of a vector with itself is zero. This process can be repeated for $$\comm{\hat{L}^2}{\comm{\hat{L}^2}{\hat{y}}}$$ and $$\comm{\hat{L}^2}{\comm{\hat{L}^2}{\hat{z}}}$$, leading us to: $$\begin{aligned} \comm{\hat{L}^2}{\comm{\hat{L}^2}{\hat{x}}} &= 2 \hbar^2 (\hat{x} \hat{L}^2 + \hat{L}^2 \hat{x}) \\ \comm{\hat{L}^2}{\comm{\hat{L}^2}{\hat{y}}} &= 2 \hbar^2 (\hat{y} \hat{L}^2 + \hat{L}^2 \hat{y}) \\ \comm{\hat{L}^2}{\comm{\hat{L}^2}{\hat{z}}} &= 2 \hbar^2 (\hat{z} \hat{L}^2 + \hat{L}^2 \hat{z}) \end{aligned}$$ At last, this brings us to the desired equation for $$\comm{\hat{L}^2}{\comm{\hat{L}^2}{\vu{r}}}$$, with $$\vu{r} = (\hat{x}, \hat{y}, \hat{z})$$. {% include proof/end.html id="proof-dipole-l-commutator" %} We then multiply this relation by $$\Bra{f} = \Bra{\ell_f m_f}$$ on the left and $$\Ket{i} = \Ket{\ell_i m_i}$$ on the right, so the right-hand side becomes: $$\begin{aligned} 2 \hbar^2 \matrixel{f}{\vu{r} \hat{L}^2 \!\!+\! \hat{L}^2 \!\vu{r}}{i} &= 2 \hbar^2 \big( \matrixel{f}{\vu{r} \hat{L}^2}{i} + \matrixel{f}{\hat{L}^2 \vu{r}}{i} \big) \\ &= 2 \hbar^2 \big( \hbar^2 \ell_i (\ell_i \!+\! 1) \matrixel{f}{\vu{r}}{i} + \hbar^2 \ell_f (\ell_f \!+\! 1) \matrixel{f}{\vu{r}}{i} \big) \\ &= 2 \hbar^4 \big(\ell_f (\ell_f \!+\! 1) + \ell_i (\ell_i \!+\! 1)\big) \matrixel{f}{\vu{r}}{i} \end{aligned}$$ And, likewise, the left-hand side becomes: $$\begin{aligned} \matrixel{f}{\comm{\hat{L}^2}{\comm{\hat{L}^2}{\vu{r}}}}{i} &= \matrixel{f}{\hat{L}^2 \comm{\hat{L}^2}{\vu{r}}}{i} - \matrixel{f}{\comm{\hat{L}^2}{\vu{r}} \hat{L}^2}{i} \\ &= \hbar^2 \ell_f (\ell_f \!+\! 1) \matrixel{f}{\comm{\hat{L}^2}{\vu{r}}}{i} - \hbar^2 \ell_i (\ell_i \!+\! 1) \matrixel{f}{\comm{\hat{L}^2}{\vu{r}}}{i} \\ &= \hbar^2 \big( \ell_f (\ell_f \!+\! 1) - \ell_i (\ell_i \!+\! 1) \big) \matrixel{f}{\comm{\hat{L}^2}{\vu{r}}}{i} \\ &= \hbar^2 \big( \ell_f (\ell_f \!+\! 1) - \ell_i (\ell_i \!+\! 1) \big) \big( \matrixel{f}{\hat{L}^2 \vu{r}}{i} - \matrixel{f}{\vu{r} \hat{L}^2}{i} \big) \\ &= \hbar^4 \big( \ell_f (\ell_f \!+\! 1) - \ell_i (\ell_i \!+\! 1) \big)^2 \matrixel{f}{\vu{r}}{i} \end{aligned}$$ Obviously, both sides are equal to each other, leading to the following equation: $$\begin{aligned} 2 \ell_f (\ell_f \!+\! 1) + 2 \ell_i (\ell_i \!+\! 1) &= \big( \ell_f (\ell_f \!+\! 1) - \ell_i (\ell_i \!+\! 1) \big)^2 \end{aligned}$$ To proceed, we rewrite the right-hand side like so: $$\begin{aligned} \big( \ell_f (\ell_f \!+\! 1) - \ell_i (\ell_i \!+\! 1) \big)^2 &= \big( \ell_f^2 - \ell_i^2 + \ell_f - \ell_i \big)^2 \\ &= \big( (\ell_f + \ell_i) (\ell_f - \ell_i) + (\ell_f - \ell_i) \big)^2 \\ &= (\ell_f + \ell_i)^2 (\ell_f - \ell_i)^2 + 2 (\ell_f + \ell_i) (\ell_f - \ell_i)^2 + (\ell_f - \ell_i)^2 \\ &= \big( (\ell_f + \ell_i)^2 + 2 (\ell_f + \ell_i) + 1 \big) (\ell_f - \ell_i)^2 \\ &= (\ell_f + \ell_i + 1)^2 (\ell_f - \ell_i)^2 \end{aligned}$$ And then we do the same to the left-hand side, yielding: $$\begin{aligned} 2 (\ell_f^2 + \ell_i^2 + \ell_f + \ell_i) &= 2 \ell_f^2 + 2 \ell_i^2 + 2 \ell_f \ell_i - 2 \ell_f \ell_i + 2 \ell_f + 2 \ell_i + 1 - 1 \\ &= (\ell_f + \ell_i + 1)^2 + \ell_f^2 + \ell_i^2 - 2 \ell_f \ell_i - 1 \\ &= (\ell_f + \ell_i + 1)^2 + (\ell_f - \ell_i)^2 - 1 \end{aligned}$$ The equation above has thus been simplified to the following form: $$\begin{aligned} (\ell_f + \ell_i + 1)^2 + (\ell_f - \ell_i)^2 - 1 &= (\ell_f + \ell_i + 1)^2 (\ell_f - \ell_i)^2 \end{aligned}$$ Rearranging yields a product equal to zero, so one or both of the factors must vanish: $$\begin{aligned} 0 &= (\ell_f + \ell_i + 1)^2 (\ell_f - \ell_i)^2 - (\ell_f + \ell_i + 1)^2 - (\ell_f - \ell_i)^2 + 1 \\ &= \big( (\ell_f + \ell_i + 1)^2 - 1 \big) \big( (\ell_f - \ell_i)^2 - 1 \big) \end{aligned}$$ The first factor is zero if $$\ell_f = \ell_i = 0$$, in which case the matrix element $$\matrixel{f}{\vu{r}}{i} = 0$$ anyway. The other, non-trivial option is therefore: $$\begin{aligned} (\ell_f - \ell_i)^2 = 1 \end{aligned}$$ {% include proof/end.html id="proof-dipole-l" %} ## Rotational rules Given a general (pseudo)scalar operator $$\hat{s}$$, which, by nature, must satisfy the following relations with the angular momentum operators: $$\begin{aligned} \comm{\hat{L}^2}{\hat{s}} = 0 \qquad \comm{\hat{L}_z}{\hat{s}} = 0 \qquad \comm{\hat{L}_{\pm}}{\hat{s}} = 0 \end{aligned}$$ Where $$\hat{L}_\pm \equiv \hat{L}_x \pm i \hat{L}_y$$. The inner product of any such $$\hat{s}$$ must obey these selection rules: $$\begin{aligned} \boxed{ \Delta \ell = 0 } \qquad \quad \boxed{ \Delta m = 0 } \end{aligned}$$ It is common to write this in the following more complete way, where $$\matrixel{\ell_f}{|\hat{s}|}{\ell_i}$$ is the **reduced matrix element**, which is identical to $$\matrixel{\ell_f m_f}{\hat{s}}{\ell_i m_i}$$, but with a different notation to say that it does not depend on $$m_f$$ or $$m_i$$: $$\begin{aligned} \boxed{ \matrixel{\ell_f m_f}{\hat{s}}{\ell_i m_i} = \delta_{\ell_f \ell_i} \delta_{m_f m_i} \matrixel{\ell_f}{|\hat{s}|}{\ell_i} } \end{aligned}$$ {% include proof/start.html id="proof-rotation-scalar" -%} Firstly, we look at the commutator of $$\hat{s}$$ with the $$z$$-component $$\hat{L}_z$$: $$\begin{aligned} 0 = \matrixel{\ell_f m_f}{\comm{\hat{L}_z}{\hat{s}}}{\ell_i m_i} &= \matrixel{\ell_f m_f}{\hat{L}_z \hat{s}}{\ell_i m_i} - \matrixel{\ell_f m_f}{\hat{s} \hat{L}_z}{\ell_i m_i} \\ &= \hbar (m_f - m_i) \matrixel{\ell_f m_f}{\hat{s}}{\ell_i m_i} \end{aligned}$$ Which can only be true if $$m_f \!-\! m_i = 0$$, unless, of course, $$\matrixel{\ell_f m_f}{\hat{s}}{\ell_i m_i} = 0$$ by itself. Secondly, we look at the commutator of $$\hat{s}$$ with the total angular momentum $$\hat{L}^2$$: $$\begin{aligned} 0 = \matrixel{\ell_f m_f}{\comm{\hat{L}^2}{\hat{s}}}{\ell_i m_i} &= \matrixel{\ell_f m_f}{\hat{L}^2 \hat{s}}{\ell_i m_i} - \matrixel{\ell_f m_f}{\hat{s} \hat{L}^2}{\ell_i m_i} \\ &= \hbar^2 \big( \ell_f (\ell_f \!+\! 1) - \ell_i (\ell_i \!+\! 1) \big) \matrixel{\ell_f m_f}{\hat{s}}{\ell_i m_i} \end{aligned}$$ Assuming $$\matrixel{\ell_f m_f}{\hat{s}}{\ell_i m_i} \neq 0$$, this can only be satisfied if the following holds: $$\begin{aligned} 0 = \ell_f^2 + \ell_f - \ell_i^2 - \ell_i = (\ell_f + \ell_i) (\ell_f - \ell_i) + (\ell_f - \ell_i) \end{aligned}$$ If $$\ell_f = \ell_i = 0$$ this equation is trivially satisfied. Otherwise, the only option is $$\ell_f \!-\! \ell_i = 0$$, which is another part of the selection rule. Thirdly, we look at the commutator of $$\hat{s}$$ with the ladder operators $$\hat{L}_\pm$$: $$\begin{aligned} 0 = \matrixel{\ell_f m_f}{\comm{\hat{L}_\pm}{\hat{s}}}{\ell_i m_i} &= \matrixel{\ell_f m_f}{\hat{L}_\pm \hat{s}}{\ell_i m_i} - \matrixel{\ell_f m_f}{\hat{s} \hat{L}_\pm}{\ell_i m_i} \\ &= C_f \matrixel{\ell_f (m_f\!\mp\!1)}{\hat{s}}{\ell_i m_i} - C_i \matrixel{\ell_f m_f}{\hat{s}}{\ell_i (m_i\!\pm\!1)} \end{aligned}$$ Where $$C_f$$ and $$C_i$$ are constants given below. We already know that $$\Delta \ell = 0$$ and $$\Delta m = 0$$, so the above matrix elements are only nonzero if $$m_f = m_i \pm 1$$. Therefore: $$\begin{aligned} C_i &= \hbar \sqrt{\ell_i (\ell_i + 1) - m_i (m_i \pm 1)} \\ C_f &= \hbar \sqrt{\ell_f (\ell_f \!+\! 1) - m_f (m_f \!\mp\! 1)} \\ &= \hbar \sqrt{\ell_f (\ell_f \!+\! 1) - (m_i \!\pm\! 1) (m_i \!\pm\! 1 \!\mp\! 1)} \\ &= \hbar \sqrt{\ell_f (\ell_f \!+\! 1) - m_i (m_i \!\pm\! 1)} \end{aligned}$$ In other words, $$C_f = C_i$$. The above equation therefore reduces to: $$\begin{aligned} \matrixel{\ell_f m_i}{\hat{s}}{\ell_i m_i} &= \matrixel{\ell_f (m_i \!\pm\! 1)}{\hat{s}}{\ell_i (m_i\!\pm\!1)} \end{aligned}$$ Which means that the value of the matrix element does not depend on $$m_i$$ (or $$m_f$$) at all. {% include proof/end.html id="proof-rotation-scalar" %} Similarly, given a general (pseudo)vector operator $$\vu{V}$$, which, by nature, must satisfy the following commutation relations, where $$\hat{V}_\pm \equiv \hat{V}_x \pm i \hat{V}_y$$: $$\begin{gathered} \comm{\hat{L}_z}{\hat{V}_z} = 0 \qquad \comm{\hat{L}_z}{\hat{V}_{\pm}} = \pm \hbar \hat{V}_{\pm} \qquad \comm{\hat{L}_{\pm}}{\hat{V}_z} = \mp \hbar \hat{V}_{\pm} \\ \comm{\hat{L}_{\pm}}{\hat{V}_{\pm}} = 0 \qquad \comm{\hat{L}_{\pm}}{\hat{V}_{\mp}} = \pm 2 \hbar \hat{V}_z \end{gathered}$$ The inner product of any such $$\vu{V}$$ must obey the following selection rules: $$\begin{aligned} \boxed{ \Delta \ell = 0 \:\:\mathrm{or}\: \pm 1 } \qquad \boxed{ \Delta m = 0 \:\:\mathrm{or}\: \pm 1 } \end{aligned}$$ In fact, the complete result involves the Clebsch-Gordan coefficients (from spin addition): $$\begin{gathered} \boxed{ \matrixel{\ell_f m_f}{\hat{V}_{z}}{\ell_i m_i} = C^{\ell_i \: 1 \: \ell_f}_{m_i \: 0 \:m_f} \matrixel{\ell_f}{|\hat{V}|}{\ell_i} } \\ \boxed{ \matrixel{\ell_f m_f}{\hat{V}_{+}}{\ell_i m_i} = - \sqrt{2} C^{\ell_i \: 1 \: \ell_f}_{m_i \: 1 \:m_f} \matrixel{\ell_f}{|\hat{V}|}{\ell_i} } \\ \boxed{ \matrixel{\ell_f m_f}{\hat{V}_{-}}{\ell_i m_i} = \sqrt{2} C^{\ell_i \: 1 \: \ell_f}_{m_i \: -1 \:m_f} \matrixel{\ell_f}{|\hat{V}}{|\ell_i} } \end{gathered}$$ ## Superselection rule Selection rules are not always about atomic electron transitions, or angular momenta even. According to the **principle of indistinguishability**, permuting identical particles never leads to an observable difference. In other words, the particles are fundamentally indistinguishable, so for any observable $$\hat{O}$$ and multi-particle state $$\Ket{\Psi}$$, we can say: $$\begin{aligned} \matrixel{\Psi}{\hat{O}}{\Psi} = \matrixel{\hat{P} \Psi}{\hat{O}}{\hat{P} \Psi} \end{aligned}$$ Where $$\hat{P}$$ is an arbitrary permutation operator. Indistinguishability implies that $$\comm{\hat{P}}{\hat{O}} = 0$$ for all $$\hat{O}$$ and $$\hat{P}$$, which lets us prove the above equation, using that $$\hat{P}$$ is unitary: $$\begin{aligned} \matrixel{\hat{P} \Psi}{\hat{O}}{\hat{P} \Psi} = \matrixel{\Psi}{\hat{P}^{-1} \hat{O} \hat{P}}{\Psi} = \matrixel{\Psi}{\hat{P}^{-1} \hat{P} \hat{O}}{\Psi} = \matrixel{\Psi}{\hat{O}}{\Psi} \end{aligned}$$ Consider a symmetric state $$\Ket{s}$$ and an antisymmetric state $$\Ket{a}$$ (see [Pauli exclusion principle](/know/concept/pauli-exclusion-principle/)), which obey the following for a permutation $$\hat{P}$$: $$\begin{aligned} \hat{P} \Ket{s} = \Ket{s} \qquad \hat{P} \Ket{a} = - \Ket{a} \end{aligned}$$ Any obervable $$\hat{O}$$ then satisfies the equation below, again thanks to the fact that $$\hat{P} = \hat{P}^{-1}$$: $$\begin{aligned} \matrixel{s}{\hat{O}}{a} = \matrixel{\hat{P} s}{\hat{O}}{a} = \matrixel{s}{\hat{P}^{-1} \hat{O}}{a} = \matrixel{s}{\hat{O} \hat{P}}{a} = \matrixel{s}{\hat{O}}{\hat{P} a} = - \matrixel{s}{\hat{O}}{a} \end{aligned}$$ This leads us to the **superselection rule**, which states that there can never be any interference between states of different permutation symmetry: $$\begin{aligned} \boxed{ \matrixel{s}{\hat{O}}{a} = 0 } \end{aligned}$$ ## References 1. D.J. Griffiths, D.F. Schroeter, *Introduction to quantum mechanics*, 3rd edition, Cambridge.