--- title: "Sokhotski-Plemelj theorem" sort_title: "Sokhotski-Plemelj theorem" date: 2021-11-01 categories: - Mathematics - Complex analysis - Quantum mechanics layout: "concept" --- The goal is to evaluate integrals of the following form, where $$f(x)$$ is assumed to be continuous in the integration interval $$[a, b]$$: $$\begin{aligned} \lim_{\eta \to 0^+} \int_a^b \frac{f(x)}{x + i \eta} \dd{x} \end{aligned}$$ To do so, we start by splitting the integrand into its real and imaginary parts (limit hidden): $$\begin{aligned} \int_a^b \frac{f(x)}{x + i \eta} \dd{x} &= \int_a^b \frac{x - i \eta}{x^2 + \eta^2} f(x) \dd{x} \\ &= \int_a^b \frac{x}{x^2 + \eta^2} f(x) \dd{x} - i \int_a^b \frac{\eta}{x^2 + \eta^2} f(x) \dd{x} \end{aligned}$$ In the real part, notice that the integrand diverges for $$x \to 0$$ when $$\eta \to 0^+$$; more specifically, there is a singularity at zero. We therefore split the integral as follows: $$\begin{aligned} \lim_{\eta \to 0^+} \int_a^b \frac{x f(x)}{x^2 + \eta^2} \dd{x} &= \lim_{\eta \to 0^+} \bigg( \int_a^{-\eta} \frac{x f(x)}{x^2 + \eta^2} \dd{x} + \int_\eta^b \frac{x f(x)}{x^2 + \eta^2} \dd{x} \bigg) \end{aligned}$$ This is simply the definition of the [Cauchy principal value](/know/concept/cauchy-principal-value/) $$\mathcal{P}$$, so the real part is given by: $$\begin{aligned} \lim_{\eta \to 0^+} \int_a^b \frac{x f(x)}{x^2 + \eta^2} \dd{x} &= \mathcal{P} \int_a^b \frac{x f(x)}{x^2} \dd{x} = \mathcal{P} \int_a^b \frac{f(x)}{x} \dd{x} \end{aligned}$$ Meanwhile, in the imaginary part, we substitute $$\eta$$ for $$1 / m$$, and introduce $$\pi$$: $$\begin{aligned} \lim_{\eta \to 0^+} \int_a^b \frac{\eta \: f(x)}{x^2 + \eta^2} \dd{x} &= \lim_{m \to +\infty} \frac{\pi}{\pi} \int_a^b \frac{1/m}{x^2 + 1/m^2} f(x) \dd{x} \\ &= \lim_{m \to +\infty} \frac{\pi}{\pi} \int_a^b \frac{m}{1 + m^2 x^2} f(x) \dd{x} \end{aligned}$$ The expression $$m / \pi (1 + m^2 x^2)$$ is a so-called *nascent delta function*, meaning that in the limit $$m \to +\infty$$ it converges to the [Dirac delta function](/know/concept/dirac-delta-function/) $$\delta(x)$$: $$\begin{aligned} \lim_{\eta \to 0^+} \int_a^b \frac{\eta \: f(x)}{x^2 + \eta^2} \dd{x} &= \pi \int_a^b \delta(x) \: f(x) \dd{x} = \pi f(0) \end{aligned}$$ By combining the real and imaginary parts, we thus arrive at the (real version of the) **Sokhotski-Plemelj theorem** of complex analysis, which is important in quantum mechanics: $$\begin{aligned} \boxed{ \lim_{\eta \to 0^+} \int_a^b \frac{f(x)}{x + i \eta} \dd{x} = \mathcal{P} \int_a^b \frac{f(x)}{x} \dd{x} - i \pi f(0) } \end{aligned}$$ However, this theorem is often written in the following sloppy way, where $$\eta$$ is defined up front to be small, the integral is hidden, and $$f(x)$$ is set to $$1$$. This awkwardly leaves $$\mathcal{P}$$ behind: $$\begin{aligned} \frac{1}{x + i \eta} = \mathcal{P} \frac{1}{x} - i \pi \delta(x) \end{aligned}$$ That was the real version of the theorem, which is a special case of a general result in complex analysis. Consider the following function: $$\begin{aligned} \phi(z) = \oint_C \frac{f(\zeta)}{\zeta - z} \dd{\zeta} \end{aligned}$$ Where $$f(z)$$ must be [holomorphic](/know/concept/holomorphic-function/). For all $$z$$ not on $$C$$, this $$\phi(z)$$ exists, but not for $$z \in C$$, since the integral diverges then. However, in the limit when approaching $$C$$, we can still obtain a value for $$\phi$$, with a caveat: the value depends on the direction we approach $$C$$ from! The full Sokhotski-Plemelj theorem then states, for all $$z$$ on the closed contour $$C$$: $$\begin{aligned} \boxed{ \lim_{y \to z} \phi(y) = \mathcal{P} \oint_C \frac{f(\zeta)}{\zeta - z} \dd{\zeta} \pm \: i \pi f(z) } \end{aligned}$$ Where $$\pm$$ is $$+$$ if $$C$$ is approached from the inside, and $$-$$ if from outside. The above real version follows by making $$C$$ an infinitely large semicircle with its flat side on the real line: the integrand vanishes away from the real axis, because $$1 / (\zeta \!-\! z) \to 0$$ for $$|\zeta| \to \infty$$.