--- title: "Sokhotski-Plemelj theorem" date: 2021-11-01 categories: - Mathematics - Complex analysis - Quantum mechanics layout: "concept" --- The goal is to evaluate integrals of the following form, where $a < 0 < b$, and $f(x)$ is assumed to be continuous in the integration interval $[a, b]$: $$\begin{aligned} \lim_{\eta \to 0^+} \int_a^b \frac{f(x)}{x + i \eta} \dd{x} \end{aligned}$$ To do so, we start by splitting the integrand into its real and imaginary parts (limit hidden): $$\begin{aligned} \int_a^b \frac{f(x)}{x + i \eta} \dd{x} &= \int_a^b \frac{x - i \eta}{x^2 + \eta^2} f(x) \dd{x} = \int_a^b \bigg( \frac{x}{x^2 + \eta^2} - i \frac{\eta}{x^2 + \eta^2} \bigg) f(x) \dd{x} \end{aligned}$$ To evaluate the real part, we notice that for $\eta \to 0^+$ the integrand diverges for $x \to 0$, and thus split the integral as follows: $$\begin{aligned} \lim_{\eta \to 0^+} \int_a^b \frac{x f(x)}{x^2 + \eta^2} \dd{x} &= \lim_{\eta \to 0^+} \bigg( \int_a^{-\eta} \frac{x f(x)}{x^2 + \eta^2} \dd{x} + \int_\eta^b \frac{x f(x)}{x^2 + \eta^2} \dd{x} \bigg) \end{aligned}$$ This is simply the definition of the [Cauchy principal value](/know/concept/cauchy-principal-value/) $\mathcal{P}$, so the real part is given by: $$\begin{aligned} \lim_{\eta \to 0^+} \int_a^b \frac{x f(x)}{x^2 + \eta^2} \dd{x} &= \mathcal{P} \int_a^b \frac{x f(x)}{x^2} \dd{x} = \mathcal{P} \int_a^b \frac{f(x)}{x} \dd{x} \end{aligned}$$ Meanwhile, in the imaginary part, we substitute $\eta$ for $1 / m$, and introduce $\pi$: $$\begin{aligned} \lim_{\eta \to 0^+} \int_a^b \frac{\eta \: f(x)}{x^2 + \eta^2} \dd{x} &= \lim_{m \to +\infty} \frac{\pi}{\pi} \int_a^b \frac{1/m}{x^2 + 1/m^2} f(x) \dd{x} \\ &= \lim_{m \to +\infty} \frac{\pi}{\pi} \int_a^b \frac{m}{1 + m^2 x^2} f(x) \dd{x} \end{aligned}$$ The expression $m / \pi (1 + m^2 x^2)$ is a so-called *nascent delta function*, meaning that in the limit $m \to +\infty$ it converges to the [Dirac delta function](/know/concept/dirac-delta-function/): $$\begin{aligned} \lim_{\eta \to 0^+} \int_a^b \frac{\eta \: f(x)}{x^2 + \eta^2} \dd{x} &= \pi \int_a^b \delta(x) \: f(x) \dd{x} = \pi f(0) \end{aligned}$$ By combining the real and imaginary parts, we thus arrive at the (real version of the) so-called **Sokhotski-Plemelj theorem** of complex analysis: $$\begin{aligned} \boxed{ \lim_{\eta \to 0^+} \int_a^b \frac{f(x)}{x + i \eta} \dd{x} = \mathcal{P} \int_a^b \frac{f(x)}{x} \dd{x} - i \pi f(0) } \end{aligned}$$ However, this theorem is often written in the following sloppy way, where $\eta$ is defined up front to be small, the integral is hidden, and $f(x)$ is set to $1$. This awkwardly leaves $\mathcal{P}$ behind: $$\begin{aligned} \frac{1}{x + i \eta} = \mathcal{P} \Big( \frac{1}{x} \Big) - i \pi \delta(x) \end{aligned}$$ The full, complex version of the Sokhotski-Plemelj theorem evaluates integrals of the following form over a contour $C$ in the complex plane: $$\begin{aligned} \phi(z) = \frac{1}{2 \pi i} \oint_C \frac{f(\zeta)}{\zeta - z} \dd{\zeta} \end{aligned}$$ Where $f(z)$ must be [holomorphic](/know/concept/holomorphic-function/). The Sokhotski-Plemelj theorem then states: $$\begin{aligned} \boxed{ \lim_{w \to z} \phi(w) = \frac{1}{2 \pi i} \mathcal{P} \oint_C \frac{f(\zeta)}{\zeta - z} \dd{\zeta} \pm \frac{f(z)}{2} } \end{aligned}$$ Where the sign is positive if $z$ is inside $C$, and negative if it is outside. The real version follows by letting $C$ follow the whole real axis, making $C$ an infinitely large semicircle, so that the integrand vanishes away from the real axis, because $1 / (\zeta \!-\! z) \to 0$ for $|\zeta| \to \infty$.