--- title: "Spherical coordinates" sort_title: "Spherical coordinates" date: 2021-03-04 categories: - Mathematics - Physics layout: "concept" --- **Spherical coordinates** are an extension of polar coordinates $$(r, \varphi)$$ to 3D. The position of a given point in space is described by three variables $$(r, \theta, \varphi)$$, defined as: * $$r$$: the **radius** or **radial distance**: distance to the origin. * $$\theta$$: the **elevation**, **polar angle** or **colatitude**: angle to the positive $$z$$-axis, or **zenith**, i.e. the "north pole". * $$\varphi$$: the **azimuth**, **azimuthal angle** or **longitude**: angle from the positive $$x$$-axis, typically in the counter-clockwise sense. Note that this is the standard notation among physicists, but mathematicians often switch the definitions of $$\theta$$ and $$\varphi$$, while still writing $$(r, \theta, \varphi)$$. [Cartesian coordinates](/know/concept/cartesian-coordinates/) $$(x, y, z)$$ and the spherical system $$(r, \theta, \varphi)$$ are related by: $$\begin{aligned} \boxed{ \begin{aligned} x &= r \sin\theta \cos\varphi \\ y &= r \sin\theta \sin\varphi \\ z &= r \cos\theta \end{aligned} } \end{aligned}$$ Conversely, a point given in $$(x, y, z)$$ can be converted to $$(r, \theta, \varphi)$$ using these formulae, where $$\mathtt{atan2}$$ is the 2-argument arctangent, which is needed to handle the signs correctly: $$\begin{aligned} \boxed{ \begin{aligned} r &= \sqrt{x^2 + y^2 + z^2} \\ \theta &= \arccos(z / r) \\ \varphi &= \mathtt{atan2}(y, x) \end{aligned} } \end{aligned}$$ Spherical coordinates form an [orthogonal curvilinear system](/know/concept/orthogonal-curvilinear-coordinates/), whose **scale factors** $$h_r$$, $$h_\theta$$ and $$h_\varphi$$ we need. To get those, we calculate the unnormalized local basis: $$\begin{aligned} h_r \vu{e}_r &= \vu{e}_x \pdv{x}{r} + \vu{e}_y \pdv{y}{r} + \vu{e}_z \pdv{z}{r} \\ &= \vu{e}_x \sin{\theta} \cos{\varphi} + \vu{e}_y \sin{\theta} \sin{\varphi} + \vu{e}_z \cos{\theta} \\ h_\theta \vu{e}_\theta &= \vu{e}_x \pdv{x}{\theta} + \vu{e}_y \pdv{y}{\theta} + \vu{e}_z \pdv{z}{\theta} \\ &= \vu{e}_x \: r \cos{\theta} \cos{\varphi} + \vu{e}_y \: r \cos{\theta} \sin{\varphi} - \vu{e}_z \: r \sin{\theta} \\ h_\varphi \vu{e}_\varphi &= \vu{e}_x \pdv{x}{\varphi} + \vu{e}_y \pdv{y}{\varphi} + \vu{e}_z \pdv{z}{\varphi} \\ &= - \vu{e}_x \: r \sin{\theta} \sin{\varphi} + \vu{e}_y \: r \sin{\theta} \cos{\varphi} \end{aligned}$$ By normalizing the **local basis vectors** $$\vu{e}_r$$, $$\vu{e}_\theta$$ and $$\vu{e}_\varphi$$, we arrive at these expressions: $$\begin{aligned} \boxed{ \begin{aligned} h_r &= 1 \\ h_\theta &= r \\ h_\varphi &= r \sin{\theta} \end{aligned} } \qquad\qquad \boxed{ \begin{aligned} \vu{e}_r &= \vu{e}_x \sin{\theta} \cos{\varphi} + \vu{e}_y \sin{\theta} \sin{\varphi} + \vu{e}_z \cos{\theta} \\ \vu{e}_\theta &= \vu{e}_x \cos{\theta} \cos{\varphi} + \vu{e}_y \cos{\theta} \sin{\varphi} - \vu{e}_z \sin{\theta} \\ \vu{e}_\varphi &= - \vu{e}_x \sin{\varphi} + \vu{e}_y \cos{\varphi} \end{aligned} } \end{aligned}$$ Thanks to these scale factors, we can easily convert calculus from the Cartesian system using the standard formulae for orthogonal curvilinear coordinates. ## Differential elements For line integrals, the tangent vector element $$\dd{\vb{\ell}}$$ for a curve is as follows: $$\begin{aligned} \boxed{ \dd{\vb{\ell}} = \vu{e}_r \dd{r} + \: \vu{e}_\theta \: r \dd{\theta} + \: \vu{e}_\varphi \: r \sin{\theta} \dd{\varphi} } \end{aligned}$$ For surface integrals, the normal vector element $$\dd{\vb{S}}$$ for a surface is given by: $$\begin{aligned} \boxed{ \dd{\vb{S}} = \vu{e}_r \: r^2 \sin{\theta} \dd{\theta} \dd{\varphi} + \: \vu{e}_\theta \: r \sin{\theta} \dd{r} \dd{\varphi} + \: \vu{e}_\varphi \: r \dd{r} \dd{\theta} } \end{aligned}$$ And for volume integrals, the infinitesimal volume $$\dd{V}$$ takes the following form: $$\begin{aligned} \boxed{ \dd{V} = r^2 \sin{\theta} \dd{r} \dd{\theta} \dd{\varphi} } \end{aligned}$$ ## Common operations The basic vector operations (gradient, divergence, curl and Laplacian) are given by: $$\begin{aligned} \boxed{ \nabla f = \vu{e}_r \pdv{f}{r} + \vu{e}_\theta \frac{1}{r} \pdv{f}{\theta} + \mathbf{e}_\varphi \frac{1}{r \sin{\theta}} \pdv{f}{\varphi} } \end{aligned}$$ $$\begin{aligned} \boxed{ \nabla \cdot \vb{V} = \pdv{V_r}{r} + \frac{2 V_r}{r} + \frac{1}{r} \pdv{V_\theta}{\theta} + \frac{V_\theta}{r \tan{\theta}} + \frac{1}{r \sin\theta} \pdv{V_\varphi}{\varphi} } \end{aligned}$$ $$\begin{aligned} \boxed{ \begin{aligned} \nabla \times \vb{V} &= \quad \vu{e}_r \bigg( \frac{1}{r} \pdv{V_\varphi}{\theta} + \frac{V_\varphi}{r \tan{\theta}} - \frac{1}{r \sin{\theta}} \pdv{V_\theta}{\varphi} \bigg) \\ &\quad\: + \vu{e}_\theta \bigg( \frac{1}{r \sin{\theta}} \pdv{V_r}{\varphi} - \pdv{V_\varphi}{r} - \frac{V_\varphi}{r} \bigg) \\ &\quad\: + \vu{e}_\varphi \bigg( \pdv{V_\theta}{r} + \frac{V_\theta}{r} - \frac{1}{r} \pdv{V_r}{\theta} \bigg) \end{aligned} } \end{aligned}$$ $$\begin{aligned} \boxed{ \nabla^2 f = \pdvn{2}{f}{r} + \frac{2}{r} \pdv{f}{r} + \frac{1}{r^2} \pdvn{2}{f}{\theta} + \frac{1}{r^2 \tan{\theta}} \pdv{f}{\theta} + \frac{1}{r^2 \sin^2{\theta}} \pdvn{2}{f}{\varphi} } \end{aligned}$$ ## Uncommon operations Uncommon operations include: the gradient of a divergence $$\nabla (\nabla \cdot \vb{V})$$, the gradient of a vector $$\nabla \vb{V}$$, the advection of a vector $$(\vb{U} \cdot \nabla) \vb{V}$$ with respect to $$\vb{U}$$, the Laplacian of a vector $$\nabla^2 \vb{V}$$, and the divergence of a 2nd-order tensor $$\nabla \cdot \overline{\overline{\vb{T}}}$$: $$\begin{aligned} \boxed{ \begin{aligned} \nabla (\nabla \cdot \vb{V}) &= \quad \vu{e}_r \bigg( \pdvn{2}{V_r}{r} + \frac{1}{r} \mpdv{V_\theta}{r}{\theta} + \frac{1}{r \sin{\theta}} \mpdv{V_\varphi}{\varphi}{r} \\ &\qquad\qquad + \frac{2}{r} \pdv{V_r}{r} - \frac{1}{r^2} \pdv{V_\theta}{\theta} - \frac{1}{r^2 \sin{\theta}} \pdv{V_\varphi}{\varphi} + \frac{1}{r \tan{\theta}} \pdv{V_\theta}{r} - \frac{2 V_r}{r^2} - \frac{V_\theta}{r^2 \tan{\theta}} \bigg) \\ &\quad\: + \vu{e}_\theta \bigg( \frac{1}{r} \mpdv{V_r}{\theta}{r} + \frac{1}{r^2} \pdvn{2}{V_\theta}{\theta} + \frac{1}{r^2 \sin{\theta}} \mpdv{V_\varphi}{\theta}{\varphi} \\ &\qquad\qquad + \frac{2}{r^2} \pdv{V_r}{\theta} + \frac{1}{r^2 \tan{\theta}} \pdv{V_\theta}{\theta} - \frac{\cos{\theta}}{r^2 \sin^2{\theta}} \pdv{V_\varphi}{\varphi} - \frac{V_\theta}{r^2 \sin^2{\theta}} \bigg) \\ &\quad\: + \vu{e}_\varphi \bigg( \frac{1}{r \sin{\theta}} \mpdv{V_r}{\varphi}{r} + \frac{1}{r^2 \sin{\theta}} \mpdv{V_\theta}{\varphi}{\theta} + \frac{1}{r^2 \sin^2{\theta}} \pdvn{2}{V_\varphi}{\varphi} \\ &\qquad\qquad + \frac{2}{r^2 \sin{\theta}} \pdv{V_r}{\varphi} + \frac{\cos{\theta}}{r^2 \sin^2{\theta}} \pdv{V_\theta}{\varphi} \bigg) \end{aligned} } \end{aligned}$$ $$\begin{aligned} \boxed{ \begin{aligned} \nabla \vb{V} &= \quad \vu{e}_r \vu{e}_r \pdv{V_r}{r} + \vu{e}_r \vu{e}_\theta \pdv{V_\theta}{r} + \vu{e}_r \vu{e}_\varphi \pdv{V_\varphi}{r} \\ &\quad\: + \vu{e}_\theta \vu{e}_r \bigg( \frac{1}{r} \pdv{V_r}{\theta} - \frac{V_\theta}{r} \bigg) + \vu{e}_\theta \vu{e}_\theta \bigg( \frac{1}{r} \pdv{V_\theta}{\theta} + \frac{V_r}{r} \bigg) + \vu{e}_\theta \vu{e}_\varphi \frac{1}{r} \pdv{V_\varphi}{\theta} \\ &\quad\: + \vu{e}_\varphi \vu{e}_r \bigg( \frac{1}{r \sin{\theta}} \pdv{V_r}{\varphi} - \frac{V_\varphi}{r} \bigg) + \vu{e}_\varphi \vu{e}_\theta \bigg( \frac{1}{r \sin{\theta}} \pdv{V_\theta}{\varphi} - \frac{V_\varphi}{r \tan{\theta}} \bigg) \\ &\quad\: + \vu{e}_\varphi \vu{e}_\varphi \bigg( \frac{1}{r \sin{\theta}} \pdv{V_\varphi}{\varphi} + \frac{V_r}{r} + \frac{V_\theta}{r \tan{\theta}} \bigg) \end{aligned} } \end{aligned}$$ $$\begin{aligned} \boxed{ \begin{aligned} (\vb{U} \cdot \nabla) \vb{V} &= \quad \vu{e}_r \bigg( U_r \pdv{V_r}{r} + \frac{U_\theta}{r} \pdv{V_r}{\theta} + \frac{U_\varphi}{r \sin{\theta}} \pdv{V_r}{\varphi} - \frac{U_\theta V_\theta}{r} - \frac{U_\varphi V_\varphi}{r} \bigg) \\ &\quad\: + \vu{e}_\theta \bigg( U_r \pdv{V_\theta}{r} + \frac{U_\theta}{r} \pdv{V_\theta}{\theta} + \frac{U_\varphi}{r \sin{\theta}} \pdv{V_\theta}{\varphi} + \frac{U_\theta V_r}{r} - \frac{U_\varphi V_\varphi}{r \tan{\theta}} \bigg) \\ &\quad\: + \vu{e}_\varphi \bigg( U_r \pdv{V_\varphi}{r} + \frac{U_\theta}{r} \pdv{V_\varphi}{\theta} + \frac{U_\varphi}{r \sin{\theta}} \pdv{V_\varphi}{\varphi} + \frac{U_\varphi V_r}{r} + \frac{U_\varphi V_\theta}{r \tan{\theta}} \bigg) \end{aligned} } \end{aligned}$$ $$\begin{aligned} \boxed{ \begin{aligned} \nabla^2 \vb{V} &= \quad\: \vu{e}_r \bigg( \pdvn{2}{V_r}{r} + \frac{1}{r^2} \pdvn{2}{V_r}{\theta} + \frac{1}{r^2 \sin^2{\theta}} \pdvn{2}{V_r}{\varphi} \\ &\qquad\qquad + \frac{2}{r} \pdv{V_r}{r} + \frac{1}{r^2 \tan{\theta}} \pdv{V_r}{\theta} - \frac{2}{r^2} \pdv{V_\theta}{\theta} - \frac{2}{r^2 \sin{\theta}} \pdv{V_\varphi}{\varphi} - \frac{2 V_r}{r^2} - \frac{2 V_\theta}{r^2 \tan{\theta}} \bigg) \\ &\quad\: + \vu{e}_\theta \bigg( \pdvn{2}{V_\theta}{r} + \frac{1}{r^2} \pdvn{2}{V_\theta}{\theta} + \frac{1}{r^2 \sin^2{\theta}} \pdvn{2}{V_\theta}{\varphi} \\ &\qquad\qquad + \frac{2}{r^2} \pdv{V_r}{\theta} + \frac{2}{r} \pdv{V_\theta}{r} + \frac{1}{r^2 \tan{\theta}} \pdv{V_\theta}{\theta} - \frac{2 \cos{\theta}}{r^2 \sin^2{\theta}} \pdv{V_\varphi}{\varphi} - \frac{V_\theta}{r^2 \sin^2{\theta}} \bigg) \\ &\quad\: + \vu{e}_\varphi \bigg( \pdvn{2}{V_\varphi}{r} + \frac{1}{r^2} \pdvn{2}{V_\varphi}{\theta} + \frac{1}{r^2 \sin^2{\theta}} \pdvn{2}{V_\varphi}{\varphi} \\ &\qquad\qquad + \frac{2}{r^2 \sin{\theta}} \pdv{V_r}{\varphi} + \frac{2 \cos{\theta}}{r^2 \sin^2{\theta}} \pdv{V_\theta}{\varphi} + \frac{2}{r} \pdv{V_\varphi}{r} + \frac{1}{r^2 \tan{\theta}} \pdv{V_\varphi}{\theta} - \frac{V_\varphi}{r^2 \sin^2{\theta}} \bigg) \end{aligned} } \end{aligned}$$ $$\begin{aligned} \boxed{ \begin{aligned} \nabla \cdot \overline{\overline{\mathbf{T}}} &= \quad \vu{e}_r \bigg( \pdv{T_{rr}}{r} + \frac{1}{r} \pdv{T_{\theta r}}{\theta} + \frac{1}{r \sin{\theta}} \pdv{T_{\varphi r}}{\varphi} \\ &\qquad\qquad + \frac{2 T_{rr}}{r} + \frac{T_{\theta r}}{r \tan{\theta}} - \frac{T_{\theta \theta}}{r} - \frac{T_{\varphi \varphi}}{r} \bigg) \\ &\quad\: + \vu{e}_\theta \bigg(\pdv{T_{r \theta}}{r} + \frac{1}{r} \pdv{T_{\theta \theta}}{\theta} + \frac{1}{r \sin{\theta}} \pdv{T_{\varphi \theta}}{\varphi} \\ &\qquad\qquad + \frac{2 T_{r \theta}}{r} + \frac{T_{\theta r}}{r} + \frac{T_{\theta \theta}}{r \tan{\theta}} - \frac{T_{\varphi \varphi}}{r \tan{\theta}} \bigg) \\ &\quad\: + \vu{e}_\varphi \bigg( \pdv{T_{r \varphi}}{r} + \frac{1}{r} \pdv{T_{\theta \varphi}}{\theta} + \frac{1}{r \sin{\theta}} \pdv{T_{\varphi \varphi}}{\varphi} \\ &\qquad\qquad + \frac{2 T_{r \varphi}}{r} + \frac{T_{\theta \varphi}}{r \tan{\theta}} + \frac{T_{\varphi r}}{r} + \frac{T_{\varphi \theta}}{r \tan{\theta}} \bigg) \end{aligned} } \end{aligned}$$ ## References 1. M.L. Boas, *Mathematical methods in the physical sciences*, 2nd edition, Wiley. 2. B. Lautrup, *Physics of continuous matter: exotic and everyday phenomena in the macroscopic world*, 2nd edition, CRC Press.