From f83a8419ba9574fb68d64049abf039c38609f3ea Mon Sep 17 00:00:00 2001 From: Prefetch Date: Sun, 21 Feb 2021 16:13:31 +0100 Subject: Add "Fourier transform" --- latex/know/concept/dirac-delta-function/source.md | 12 ++++++------ 1 file changed, 6 insertions(+), 6 deletions(-) (limited to 'latex/know/concept/dirac-delta-function') diff --git a/latex/know/concept/dirac-delta-function/source.md b/latex/know/concept/dirac-delta-function/source.md index 478efb4..cb98c41 100644 --- a/latex/know/concept/dirac-delta-function/source.md +++ b/latex/know/concept/dirac-delta-function/source.md @@ -48,7 +48,7 @@ $$\begin{aligned} \delta(x) %= \lim_{n \to +\infty} \!\Big\{\frac{\sin(n x)}{\pi x}\Big\} = \frac{1}{2\pi} \int_{-\infty}^\infty \exp(i k x) \dd{k} - \propto \hat{\mathcal{F}}\{1\} + \:\:\propto\:\: \hat{\mathcal{F}}\{1\} } \end{aligned}$$ @@ -79,12 +79,12 @@ $$\begin{aligned} } \end{aligned}$$ -*__Proof.__ Be careful about which variable is used for the -differentiation:* +*__Proof.__ Note which variable is used for the +differentiation, and that $\delta'(x - \xi) = - \delta'(\xi - x)$:* $$\begin{aligned} - \int f(\xi) \: \frac{d\delta(x - \xi)}{dx} \dd{\xi} - &= \frac{d}{dx} \int f(\xi) \: \delta(x - \xi) \dd{x} + \int f(\xi) \: \dv{\delta(x - \xi)}{x} \dd{\xi} + &= \dv{x} \int f(\xi) \: \delta(x - \xi) \dd{x} = f'(x) \end{aligned}$$ @@ -94,6 +94,6 @@ This property also generalizes nicely for the higher-order derivatives: $$\begin{aligned} \boxed{ - \int f(\xi) \: \frac{d^n \delta(x - \xi)}{dx^n} \dd{\xi} = \dv[n]{f(x)}{x} + \int f(\xi) \: \dv[n]{\delta(x - \xi)}{x} \dd{\xi} = \dv[n]{f(x)}{x} } \end{aligned}$$ -- cgit v1.2.3