From 92a86d01c4837901fa433158294a9ce23cbfcefa Mon Sep 17 00:00:00 2001 From: Prefetch Date: Sat, 20 Feb 2021 20:12:29 +0100 Subject: Fix "Pauli exclusion principle" --- .../concept/pauli-exclusion-principle/source.md | 32 +++++++++++----------- 1 file changed, 16 insertions(+), 16 deletions(-) (limited to 'latex/know/concept/pauli-exclusion-principle/source.md') diff --git a/latex/know/concept/pauli-exclusion-principle/source.md b/latex/know/concept/pauli-exclusion-principle/source.md index 0a35869..e9e4d42 100644 --- a/latex/know/concept/pauli-exclusion-principle/source.md +++ b/latex/know/concept/pauli-exclusion-principle/source.md @@ -7,24 +7,24 @@ In quantum mechanics, the *Pauli exclusion principle* is a theorem that has profound consequences for how the world works. Suppose we have a composite state -$\ket*{x_1}\!\ket*{x_2} = \ket*{x_1} \otimes \ket*{x_2}$, where the two -identical particles $x_1$ and $x_2$ each have the same two allowed +$\ket*{x_1}\ket*{x_2} = \ket*{x_1} \otimes \ket*{x_2}$, where the two +identical particles $x_1$ and $x_2$ each can occupy the same two allowed states $a$ and $b$. We then define the permutation operator $\hat{P}$ as follows: $$\begin{aligned} - \hat{P} \ket{a}\!\ket{b} = \ket{b}\!\ket{a} + \hat{P} \ket{a}\ket{b} = \ket{b}\ket{a} \end{aligned}$$ That is, it swaps the states of the particles. Obviously, swapping the states twice simply gives the original configuration again, so: $$\begin{aligned} - \hat{P}^2 \ket{a}\!\ket{b} = \ket{a}\!\ket{b} + \hat{P}^2 \ket{a}\ket{b} = \ket{a}\ket{b} \end{aligned}$$ -Therefore, $\ket{a}\!\ket{b}$ is an eigenvector of $\hat{P}^2$ with -eigenvalue $1$. Since $[\hat{P}, \hat{P}^2] = 0$, $\ket{a}\!\ket{b}$ +Therefore, $\ket{a}\ket{b}$ is an eigenvector of $\hat{P}^2$ with +eigenvalue $1$. Since $[\hat{P}, \hat{P}^2] = 0$, $\ket{a}\ket{b}$ must also be an eigenket of $\hat{P}$ with eigenvalue $\lambda$, satisfying $\lambda^2 = 1$, so we know that $\lambda = 1$ or $\lambda = -1$. @@ -38,14 +38,14 @@ define $\hat{P}_f$ with $\lambda = -1$ and $\hat{P}_b$ with $\lambda = 1$, such that: $$\begin{aligned} - \hat{P}_f \ket{a}\!\ket{b} = \ket{b}\!\ket{a} = - \ket{a}\!\ket{b} + \hat{P}_f \ket{a}\ket{b} = \ket{b}\ket{a} = - \ket{a}\ket{b} \qquad - \hat{P}_b \ket{a}\!\ket{b} = \ket{b}\!\ket{a} = \ket{a}\!\ket{b} + \hat{P}_b \ket{a}\ket{b} = \ket{b}\ket{a} = \ket{a}\ket{b} \end{aligned}$$ Another fundamental fact of nature is that identical particles cannot be distinguished by any observation. Therefore it is impossible to tell -apart $\ket{a}\!\ket{b}$ and the permuted state $\ket{b}\!\ket{a}$, +apart $\ket{a}\ket{b}$ and the permuted state $\ket{b}\ket{a}$, regardless of the eigenvalue $\lambda$. There is no physical difference! But this does not mean that $\hat{P}$ is useless: despite not having any @@ -55,7 +55,7 @@ where $\alpha$ and $\beta$ are unknown: $$\begin{aligned} \ket{\Psi(a, b)} - = \alpha \ket{a}\!\ket{b} + \beta \ket{b}\!\ket{a} + = \alpha \ket{a}\ket{b} + \beta \ket{b}\ket{a} \end{aligned}$$ When we apply $\hat{P}$, we can "choose" between two "intepretations" of @@ -64,10 +64,10 @@ equal, the right-hand sides must be equal too: $$\begin{aligned} \hat{P} \ket{\Psi(a, b)} - &= \lambda \alpha \ket{a}\!\ket{b} + \lambda \beta \ket{b}\!\ket{a} + &= \lambda \alpha \ket{a}\ket{b} + \lambda \beta \ket{b}\ket{a} \\ \hat{P} \ket{\Psi(a, b)} - = \alpha \ket{b}\!\ket{a} + \beta \ket{a}\!\ket{b} + &= \alpha \ket{b}\ket{a} + \beta \ket{a}\ket{b} \end{aligned}$$ This gives us the equations $\lambda \alpha = \beta$ and @@ -76,7 +76,7 @@ that $\lambda$ can be either $-1$ or $1$. In any case, for bosons ($\lambda = 1$), we thus find that $\alpha = \beta$: $$\begin{aligned} - \ket{\Psi(a, b)}_b = C \big( \ket{a}\!\ket{b} + \ket{b}\!\ket{a} \!\big) + \ket{\Psi(a, b)}_b = C \big( \ket{a}\ket{b} + \ket{b}\ket{a} \big) \end{aligned}$$ Where $C$ is a normalization constant. As expected, this state is @@ -84,7 +84,7 @@ Where $C$ is a normalization constant. As expected, this state is fermions ($\lambda = -1$), we find that $\alpha = -\beta$: $$\begin{aligned} - \ket{\Psi(a, b)}_f = C \big( \ket{a}\!\ket{b} - \ket{b}\!\ket{a} \!\big) + \ket{\Psi(a, b)}_f = C \big( \ket{a}\ket{b} - \ket{b}\ket{a} \big) \end{aligned}$$ This state called *antisymmetric* under exchange: switching $a$ and $b$ @@ -95,14 +95,14 @@ For bosons, we just need to update the normalization constant $C$: $$\begin{aligned} \ket{\Psi(a, a)}_b - = C \ket{a}\!\ket{a} + = C \ket{a}\ket{a} \end{aligned}$$ However, for fermions, the state is unnormalizable and thus unphysical: $$\begin{aligned} \ket{\Psi(a, a)}_f - = C \big( \ket{a}\!\ket{a} - \ket{a}\!\ket{a} \!\big) + = C \big( \ket{a}\ket{a} - \ket{a}\ket{a} \big) = 0 \end{aligned}$$ -- cgit v1.2.3