From e71c14aa725d71a2ea7310c69b3d11a8bc12c0b0 Mon Sep 17 00:00:00 2001 From: Prefetch Date: Sat, 20 Feb 2021 13:46:18 +0100 Subject: Add latex/ directory + fix MathJax renderer --- latex/know/concept/blochs-theorem/source.md | 81 +++++++++++++++++++++++++++++ 1 file changed, 81 insertions(+) create mode 100644 latex/know/concept/blochs-theorem/source.md (limited to 'latex/know') diff --git a/latex/know/concept/blochs-theorem/source.md b/latex/know/concept/blochs-theorem/source.md new file mode 100644 index 0000000..2307d2e --- /dev/null +++ b/latex/know/concept/blochs-theorem/source.md @@ -0,0 +1,81 @@ +% Bloch's theorem + + +# Bloch's theorem +In quantum mechanics, *Bloch's theorem* states that, +given a potential $V(\vec{r})$ which is periodic on a lattice, +i.e. $V(\vec{r}) = V(\vec{r} + \vec{a})$ +for a primitive lattice vector $\vec{a}$, +then it follows that the solutions $\psi(\vec{r})$ +to the time-independent Schrödinger equation +take the following form, +where the function $u(\vec{r})$ is periodic on the same lattice, +i.e. $u(\vec{r}) = u(\vec{r} + \vec{a})$: + +$$ +\begin{aligned} + \boxed{ + \psi(\vec{r}) = u(\vec{r}) e^{i \vec{k} \cdot \vec{r}} + } +\end{aligned} +$$ + +In other words, in a periodic potential, +the solutions are simply plane waves with a periodic modulation, +known as *Bloch functions* or *Bloch states*. + +This is suprisingly easy to prove: +if the Hamiltonian $\hat{H}$ is lattice-periodic, +then it will commute with the unitary translation operator $\hat{T}(\vec{a})$, +i.e. $\comm{\hat{H}}{\hat{T}(\vec{a})} = 0$. +Therefore $\hat{H}$ and $\hat{T}(\vec{a})$ must share eigenstates $\psi(\vec{r})$: + +$$ +\begin{aligned} + \hat{H} \:\psi(\vec{r}) = E \:\psi(\vec{r}) + \qquad + \hat{T}(\vec{a}) \:\psi(\vec{r}) = \tau \:\psi(\vec{r}) +\end{aligned} +$$ + +Since $\hat{T}$ is unitary, +its eigenvalues $\tau$ must have the form $e^{i \theta}$, with $\theta$ real. +Therefore a translation by $\vec{a}$ causes a phase shift, +for some vector $\vec{k}$: + +$$ +\begin{aligned} + \psi(\vec{r} + \vec{a}) + = \hat{T}(\vec{a}) \:\psi(\vec{r}) + = e^{i \theta} \:\psi(\vec{r}) + = e^{i \vec{k} \cdot \vec{a}} \:\psi(\vec{r}) +\end{aligned} +$$ + +Let us now define the following function, +keeping our arbitrary choice of $\vec{k}$: + +$$ +\begin{aligned} + u(\vec{r}) + = e^{- i \vec{k} \cdot \vec{r}} \:\psi(\vec{r}) +\end{aligned} +$$ + +As it turns out, this function is guaranteed to be lattice-periodic for any $\vec{k}$: + +$$ +\begin{aligned} + u(\vec{r} + \vec{a}) + &= e^{- i \vec{k} \cdot (\vec{r} + \vec{a})} \:\psi(\vec{r} + \vec{a}) + \\ + &= e^{- i \vec{k} \cdot \vec{r}} e^{- i \vec{k} \cdot \vec{a}} e^{i \vec{k} \cdot \vec{a}} \:\psi(\vec{r}) + \\ + &= e^{- i \vec{k} \cdot \vec{r}} \:\psi(\vec{r}) + \\ + &= u(\vec{r}) +\end{aligned} +$$ + +Then Bloch's theorem follows from +isolating the definition of $u(\vec{r})$ for $\psi(\vec{r})$. -- cgit v1.2.3