From 5999e8682785cc397e266122fba91fafa8b48269 Mon Sep 17 00:00:00 2001 From: Prefetch Date: Sat, 20 Feb 2021 14:55:33 +0100 Subject: Add "Dirac notation" + tweak "Bloch's theorem" --- latex/know/concept/blochs-theorem/source.md | 2 +- latex/know/concept/dirac-notation/source.md | 119 ++++++++++++++++++++++++++++ 2 files changed, 120 insertions(+), 1 deletion(-) create mode 100644 latex/know/concept/dirac-notation/source.md (limited to 'latex') diff --git a/latex/know/concept/blochs-theorem/source.md b/latex/know/concept/blochs-theorem/source.md index 2307d2e..528c218 100644 --- a/latex/know/concept/blochs-theorem/source.md +++ b/latex/know/concept/blochs-theorem/source.md @@ -27,7 +27,7 @@ known as *Bloch functions* or *Bloch states*. This is suprisingly easy to prove: if the Hamiltonian $\hat{H}$ is lattice-periodic, then it will commute with the unitary translation operator $\hat{T}(\vec{a})$, -i.e. $\comm{\hat{H}}{\hat{T}(\vec{a})} = 0$. +i.e. $[\hat{H}, \hat{T}(\vec{a})] = 0$. Therefore $\hat{H}$ and $\hat{T}(\vec{a})$ must share eigenstates $\psi(\vec{r})$: $$ diff --git a/latex/know/concept/dirac-notation/source.md b/latex/know/concept/dirac-notation/source.md new file mode 100644 index 0000000..7b384ab --- /dev/null +++ b/latex/know/concept/dirac-notation/source.md @@ -0,0 +1,119 @@ +% Dirac notation + + +# Dirac notation + +*Dirac notation* is a notation to do calculations in a Hilbert space +without needing to worry about the space's representation. It is +basically the *lingua franca* of quantum mechanics. + +In Dirac notation there are *kets* $\ket{V}$ from the Hilbert space +$\mathbb{H}$ and *bras* $\bra{V}$ from a dual $\mathbb{H}'$ of the +former. Crucially, the bras and kets are from different Hilbert spaces +and therefore cannot be added, but every bra has a corresponding ket and +vice versa. + +Bras and kets can only be combined in two ways: the *inner product* +$\braket{V | W}$, which returns a scalar, and the *outer product* +$\ket{V} \bra{W}$, which returns a mapping $\hat{L}$ from kets $\ket{V}$ +to other kets $\ket{V'}$, i.e. a linear operator. Recall that the +Hilbert inner product must satisfy: + +$$\begin{aligned} + \braket{V | W} = \braket{W | V}^* +\end{aligned}$$ + +So far, nothing has been said about the actual representation of bras or +kets. If we represent kets as $N$-dimensional columns vectors, the +corresponding bras are given by the kets' adjoints, i.e. their transpose +conjugates: + +$$\begin{aligned} + \ket{V} = + \begin{bmatrix} + v_1 \\ \vdots \\ v_N + \end{bmatrix} + \quad \implies \quad + \bra{V} = + \begin{bmatrix} + v_1^* & \cdots & v_N^* + \end{bmatrix} +\end{aligned}$$ + +The inner product $\braket{V | W}$ is then just the familiar dot product $V \cdot W$: + +$$\begin{gathered} + \braket{V | W} + = + \begin{bmatrix} + v_1^* & \cdots & v_N^* + \end{bmatrix} + \cdot + \begin{bmatrix} + w_1 \\ \vdots \\ w_N + \end{bmatrix} + = v_1^* w_1 + ... + v_N^* w_N +\end{gathered}$$ + +Meanwhile, the outer product $\ket{V} \bra{W}$ creates an $N \cross N$ matrix: + +$$\begin{gathered} + \ket{V} \bra{W} + = + \begin{bmatrix} + v_1 \\ \vdots \\ v_N + \end{bmatrix} + \cdot + \begin{bmatrix} + w_1^* & \cdots & w_N^* + \end{bmatrix} + = + \begin{bmatrix} + v_1 w_1^* & \cdots & v_1 w_N^* \\ + \vdots & \ddots & \vdots \\ + v_N w_1^* & \cdots & v_N w_N^* + \end{bmatrix} +\end{gathered}$$ + +If the kets are instead represented by functions $f(x)$ of +$x \in [a, b]$, then the bras represent *functionals* $F[u(x)]$ which +take an unknown function $u(x)$ as an argument and turn it into a scalar +using integration: + +$$\begin{aligned} + \ket{f} = f(x) + \quad \implies \quad + \bra{f} + = F[u(x)] + = \int_a^b f^*(x) \: u(x) \dd{x} +\end{aligned}$$ + +Consequently, the inner product is simply the following familiar integral: + +$$\begin{gathered} + \braket{f | g} + = F[g(x)] + = \int_a^b f^*(x) \: g(x) \dd{x} +\end{gathered}$$ + +However, the outer product becomes something rather abstract: + +$$\begin{gathered} + \ket{f} \bra{g} + = f(x) \: G[u(x)] + = f(x) \int_a^b g^*(\xi) \: u(\xi) \dd{\xi} +\end{gathered}$$ + +This result makes more sense if we surround it by a bra and a ket: + +$$\begin{aligned} + \bra{u} \!\Big(\!\ket{f} \bra{g}\!\Big)\! \ket{w} + &= U\big[f(x) \: G[w(x)]\big] + = U\Big[ f(x) \int_a^b g^*(\xi) \: w(\xi) \dd{\xi} \Big] + \\ + &= \int_a^b u^*(x) \: f(x) \: \Big(\int_a^b g^*(\xi) \: w(\xi) \dd{\xi} \Big) \dd{x} + \\ + &= \Big( \int_a^b u^*(x) \: f(x) \dd{x} \Big) \Big( \int_a^b g^*(\xi) \: w(\xi) \dd{\xi} \Big) + \\ + &= \braket{u | f} \braket{g | w} +\end{aligned}$$ -- cgit v1.2.3