% Dirac notation # Dirac notation *Dirac notation* is a notation to do calculations in a Hilbert space without needing to worry about the space's representation. It is basically the *lingua franca* of quantum mechanics. In Dirac notation there are *kets* $\ket{V}$ from the Hilbert space $\mathbb{H}$ and *bras* $\bra{V}$ from a dual $\mathbb{H}'$ of the former. Crucially, the bras and kets are from different Hilbert spaces and therefore cannot be added, but every bra has a corresponding ket and vice versa. Bras and kets can only be combined in two ways: the *inner product* $\braket{V | W}$, which returns a scalar, and the *outer product* $\ket{V} \bra{W}$, which returns a mapping $\hat{L}$ from kets $\ket{V}$ to other kets $\ket{V'}$, i.e. a linear operator. Recall that the Hilbert inner product must satisfy: $$\begin{aligned} \braket{V | W} = \braket{W | V}^* \end{aligned}$$ So far, nothing has been said about the actual representation of bras or kets. If we represent kets as $N$-dimensional columns vectors, the corresponding bras are given by the kets' adjoints, i.e. their transpose conjugates: $$\begin{aligned} \ket{V} = \begin{bmatrix} v_1 \\ \vdots \\ v_N \end{bmatrix} \quad \implies \quad \bra{V} = \begin{bmatrix} v_1^* & \cdots & v_N^* \end{bmatrix} \end{aligned}$$ The inner product $\braket{V | W}$ is then just the familiar dot product $V \cdot W$: $$\begin{gathered} \braket{V | W} = \begin{bmatrix} v_1^* & \cdots & v_N^* \end{bmatrix} \cdot \begin{bmatrix} w_1 \\ \vdots \\ w_N \end{bmatrix} = v_1^* w_1 + ... + v_N^* w_N \end{gathered}$$ Meanwhile, the outer product $\ket{V} \bra{W}$ creates an $N \cross N$ matrix: $$\begin{gathered} \ket{V} \bra{W} = \begin{bmatrix} v_1 \\ \vdots \\ v_N \end{bmatrix} \cdot \begin{bmatrix} w_1^* & \cdots & w_N^* \end{bmatrix} = \begin{bmatrix} v_1 w_1^* & \cdots & v_1 w_N^* \\ \vdots & \ddots & \vdots \\ v_N w_1^* & \cdots & v_N w_N^* \end{bmatrix} \end{gathered}$$ If the kets are instead represented by functions $f(x)$ of $x \in [a, b]$, then the bras represent *functionals* $F[u(x)]$ which take an unknown function $u(x)$ as an argument and turn it into a scalar using integration: $$\begin{aligned} \ket{f} = f(x) \quad \implies \quad \bra{f} = F[u(x)] = \int_a^b f^*(x) \: u(x) \dd{x} \end{aligned}$$ Consequently, the inner product is simply the following familiar integral: $$\begin{gathered} \braket{f | g} = F[g(x)] = \int_a^b f^*(x) \: g(x) \dd{x} \end{gathered}$$ However, the outer product becomes something rather abstract: $$\begin{gathered} \ket{f} \bra{g} = f(x) \: G[u(x)] = f(x) \int_a^b g^*(\xi) \: u(\xi) \dd{\xi} \end{gathered}$$ This result makes more sense if we surround it by a bra and a ket: $$\begin{aligned} \bra{u} \!\Big(\!\ket{f} \bra{g}\!\Big)\! \ket{w} &= U\big[f(x) \: G[w(x)]\big] = U\Big[ f(x) \int_a^b g^*(\xi) \: w(\xi) \dd{\xi} \Big] \\ &= \int_a^b u^*(x) \: f(x) \: \Big(\int_a^b g^*(\xi) \: w(\xi) \dd{\xi} \Big) \dd{x} \\ &= \Big( \int_a^b u^*(x) \: f(x) \dd{x} \Big) \Big( \int_a^b g^*(\xi) \: w(\xi) \dd{\xi} \Big) \\ &= \braket{u | f} \braket{g | w} \end{aligned}$$