Categories: Mathematics, Physics.

Parabolic cylindrical coordinates

Parabolic cylindrical coordinates extend parabolic coordinates (σ,τ)(\sigma, \tau) to 3D, by describing a point in space using the variables (σ,τ,z)(\sigma, \tau, z). The zz-axis is the same as in the Cartesian system, (hence the name cylindrical), while the coordinate lines of σ\sigma and τ\tau are confocal parabolas.

Cartesian coordinates (x,y,z)(x, y, z) and this system (σ,τ,z)(\sigma, \tau, z) are related by:

x=12(τ2σ2)y=στz=z\begin{aligned} \boxed{ \begin{aligned} x &= \frac{1}{2} (\tau^2 - \sigma^2) \\ y &= \sigma \tau \\ z &= z \end{aligned} } \end{aligned}

Conversely, a point given in (x,y,z)(x, y, z) can be converted to (σ,τ,z)(\sigma, \tau, z) using these formulae:

σ=x2+y2xτ=sgn(y)x2+y2+xz=z\begin{aligned} \boxed{ \begin{aligned} \sigma &= \sqrt{\sqrt{x^2 + y^2} - x} \\ \tau &= \sgn(y) \sqrt{\sqrt{x^2 + y^2} + x} \\ z &= z \end{aligned} } \end{aligned}

Parabolic cylindrical coordinates form an orthogonal curvilinear system, whose scale factors hσh_\sigma, hτh_\tau and hzh_z we need. To get those, we calculate the unnormalized local basis:

hσe^σ=e^xxσ+e^yyσ+e^zzσ=e^xσ+e^yτhτe^τ=e^xxτ+e^yyτ+e^zzτ=e^xτ+e^yσhσe^σ=e^xxz+e^yyz+e^zzz=e^z\begin{aligned} h_\sigma \vu{e}_\sigma &= \vu{e}_x \pdv{x}{\sigma} + \vu{e}_y \pdv{y}{\sigma} + \vu{e}_z \pdv{z}{\sigma} \\ &= - \vu{e}_x \sigma + \vu{e}_y \tau \\ h_\tau \vu{e}_\tau &= \vu{e}_x \pdv{x}{\tau} + \vu{e}_y \pdv{y}{\tau} + \vu{e}_z \pdv{z}{\tau} \\ &= \vu{e}_x \tau + \vu{e}_y \sigma \\ h_\sigma \vu{e}_\sigma &= \vu{e}_x \pdv{x}{z} + \vu{e}_y \pdv{y}{z} + \vu{e}_z \pdv{z}{z} \\ &= \vu{e}_z \end{aligned}

By normalizing the local basis vectors e^σ\vu{e}_\sigma, e^τ\vu{e}_\tau and e^z\vu{e}_z, we arrive at these expressions, where we have defined the abbreviation ρ\rho for convenience:

hσ=ρσ2+τ2hτ=ρσ2+τ2hz=1e^σ=e^xσρ+e^yτρe^τ=e^xτρ+e^yσρe^z=e^z\begin{aligned} \boxed{ \begin{aligned} h_\sigma &= \rho \equiv \sqrt{\sigma^2 + \tau^2} \\ h_\tau &= \rho \equiv \sqrt{\sigma^2 + \tau^2} \\ h_z &= 1 \end{aligned} } \qquad\qquad \boxed{ \begin{aligned} \vu{e}_\sigma &= - \vu{e}_x \frac{\sigma}{\rho} + \vu{e}_y \frac{\tau}{\rho} \\ \vu{e}_\tau &= \vu{e}_x \frac{\tau}{\rho} + \vu{e}_y \frac{\sigma}{\rho} \\ \vu{e}_z &= \vu{e}_z \end{aligned} } \end{aligned}

Thanks to these scale factors, we can easily convert calculus from the Cartesian system using the standard formulae for orthogonal curvilinear coordinates.

Differential elements

For line integrals, the tangent vector element d\dd{\vb{\ell}} for a curve is as follows:

d=e^σρdσ+e^τρdτ+e^zdz\begin{aligned} \boxed{ \dd{\vb{\ell}} = \vu{e}_\sigma \: \rho \dd{\sigma} + \: \vu{e}_\tau \: \rho \dd{\tau} + \: \vu{e}_z \dd{z} } \end{aligned}

For surface integrals, the normal vector element dS\dd{\vb{S}} for a surface is given by:

dS=e^σρdτdz+e^τρdσdz+e^zρ2dσdτ\begin{aligned} \boxed{ \dd{\vb{S}} = \vu{e}_\sigma \: \rho \dd{\tau} \dd{z} + \: \vu{e}_\tau \: \rho \dd{\sigma} \dd{z} + \: \vu{e}_z \: \rho^2 \dd{\sigma} \dd{\tau} } \end{aligned}

And for volume integrals, the infinitesimal volume dV\dd{V} takes the following form:

dV=ρ2dσdτdz\begin{aligned} \boxed{ \dd{V} = \rho^2 \dd{\sigma} \dd{\tau} \dd{z} } \end{aligned}

Common operations

The basic vector operations (gradient, divergence, curl and Laplacian) are given by:

f=e^σ1ρfσ+e^τ1ρfτ+e^zfz\begin{aligned} \boxed{ \nabla f = \vu{e}_\sigma \frac{1}{\rho} \pdv{f}{\sigma} + \vu{e}_\tau \frac{1}{\rho} \pdv{f}{\tau} + \vu{e}_z \pdv{f}{z} } \end{aligned} V=1ρVσσ+σVσρ3+1ρVττ+τVτρ3+Vzz\begin{aligned} \boxed{ \nabla \cdot \vb{V} = \frac{1}{\rho} \pdv{V_\sigma}{\sigma} + \frac{\sigma V_\sigma}{\rho^3} + \frac{1}{\rho} \pdv{V_\tau}{\tau} + \frac{\tau V_\tau}{\rho^3} + \pdv{V_z}{z} } \end{aligned} ×V=e^σ(1ρVzτVτz)+e^τ(Vσz1ρVzσ)+e^z(1ρVτσ+σVτρ31ρVσττVσρ3)\begin{aligned} \boxed{ \begin{aligned} \nabla \times \vb{V} &= \quad \vu{e}_\sigma \bigg( \frac{1}{\rho} \pdv{V_z}{\tau} - \pdv{V_\tau}{z} \bigg) \\ &\quad\: + \vu{e}_\tau \bigg( \pdv{V_\sigma}{z} - \frac{1}{\rho} \pdv{V_z}{\sigma} \bigg) \\ &\quad\: + \vu{e}_z \bigg( \frac{1}{\rho} \pdv{V_\tau}{\sigma} + \frac{\sigma V_\tau}{\rho^3} - \frac{1}{\rho} \pdv{V_\sigma}{\tau} - \frac{\tau V_\sigma}{\rho^3} \bigg) \end{aligned} } \end{aligned} 2f=1ρ22fσ2+1ρ22fτ2+2fz2\begin{aligned} \boxed{ \nabla^2 f = \frac{1}{\rho^2} \pdvn{2}{f}{\sigma} + \frac{1}{\rho^2} \pdvn{2}{f}{\tau} + \pdvn{2}{f}{z} } \end{aligned}

Uncommon operations

Uncommon operations include: the gradient of a divergence (V)\nabla (\nabla \cdot \vb{V}), the gradient of a vector V\nabla \vb{V}, the advection of a vector (U)V(\vb{U} \cdot \nabla) \vb{V} with respect to U\vb{U}, the Laplacian of a vector 2V\nabla^2 \vb{V}, and the divergence of a 2nd-order tensor T\nabla \cdot \overline{\overline{\vb{T}}}:

(V)=e^σ(1ρ22Vσσ2+1ρ22Vτστ+1ρ2Vzσz+τρ4Vτσσρ4Vττ+ρ23σ2ρ6Vσ3στVτρ6)+e^τ(1ρ22Vστσ+1ρ22Vττ2+1ρ2Vzτzτρ4Vσσ+σρ4Vστ3στVσρ6+ρ23τ2ρ6Vτ)+e^z(1ρ2Vσzσ+1ρ2Vτzτ+2Vzz2+σρ3Vσz+τρ3Vτz)\begin{aligned} \boxed{ \begin{aligned} \nabla (\nabla \cdot \vb{V}) &= \quad \vu{e}_\sigma \bigg( \frac{1}{\rho^2} \pdvn{2}{V_\sigma}{\sigma} + \frac{1}{\rho^2} \mpdv{V_\tau}{\sigma}{\tau} + \frac{1}{\rho} \mpdv{V_z}{\sigma}{z} \\ &\qquad\qquad + \frac{\tau}{\rho^4} \pdv{V_\tau}{\sigma} - \frac{\sigma}{\rho^4} \pdv{V_\tau}{\tau} + \frac{\rho^2 - 3 \sigma^2}{\rho^6} V_\sigma - \frac{3 \sigma \tau V_\tau}{\rho^6} \bigg) \\ &\quad\: + \vu{e}_\tau \bigg( \frac{1}{\rho^2} \mpdv{V_\sigma}{\tau}{\sigma} + \frac{1}{\rho^2} \pdvn{2}{V_\tau}{\tau} + \frac{1}{\rho} \mpdv{V_z}{\tau}{z} \\ &\qquad\qquad - \frac{\tau}{\rho^4} \pdv{V_\sigma}{\sigma} + \frac{\sigma}{\rho^4} \pdv{V_\sigma}{\tau} - \frac{3 \sigma \tau V_\sigma}{\rho^6} + \frac{\rho^2 - 3 \tau^2}{\rho^6} V_\tau \bigg) \\ &\quad\: + \vu{e}_z \bigg( \frac{1}{\rho} \mpdv{V_\sigma}{z}{\sigma} + \frac{1}{\rho} \mpdv{V_\tau}{z}{\tau} + \pdvn{2}{V_z}{z} + \frac{\sigma}{\rho^3} \pdv{V_\sigma}{z} + \frac{\tau}{\rho^3} \pdv{V_\tau}{z} \bigg) \end{aligned} } \end{aligned} V=e^σe^σ(1ρVσσ+τVτρ3)+e^σe^τ(1ρVτστVσρ3)+e^σe^z1ρVzσ+e^τe^σ(1ρVστσVτρ3)+e^τe^τ(1ρVττ+σVσρ3)+e^τe^z1ρVzτ+e^ze^σVσz+e^ze^τVτz+e^ze^zVzz\begin{aligned} \boxed{ \begin{aligned} \nabla \vb{V} &= \quad \vu{e}_\sigma \vu{e}_\sigma \bigg( \frac{1}{\rho} \pdv{V_\sigma}{\sigma} + \frac{\tau V_\tau}{\rho^3} \bigg) + \vu{e}_\sigma \vu{e}_\tau \bigg( \frac{1}{\rho} \pdv{V_\tau}{\sigma} - \frac{\tau V_\sigma}{\rho^3} \bigg) + \vu{e}_\sigma \vu{e}_z \frac{1}{\rho} \pdv{V_z}{\sigma} \\ &\quad\: + \vu{e}_\tau \vu{e}_\sigma \bigg( \frac{1}{\rho} \pdv{V_\sigma}{\tau} - \frac{\sigma V_\tau}{\rho^3} \bigg) + \vu{e}_\tau \vu{e}_\tau \bigg( \frac{1}{\rho} \pdv{V_\tau}{\tau} + \frac{\sigma V_\sigma}{\rho^3} \bigg) + \vu{e}_\tau \vu{e}_z \frac{1}{\rho} \pdv{V_z}{\tau} \\ &\quad\: + \vu{e}_z \vu{e}_\sigma \pdv{V_\sigma}{z} + \vu{e}_z \vu{e}_\tau \pdv{V_\tau}{z} + \vu{e}_z \vu{e}_z \pdv{V_z}{z} \end{aligned} } \end{aligned} (U)V=e^σ(UσρVσσ+UτρVστ+UzVσz+τρ3UσVτσρ3UτVτ)+e^τ(UσρVτσ+UτρVττ+UzVτz+σρ3UτVστρ3UσVσ)+e^z(UσρVzσ+UτρVzτ+UzVzz)\begin{aligned} \boxed{ \begin{aligned} (\vb{U} \cdot \nabla) \vb{V} &= \quad \vu{e}_\sigma \bigg( \frac{U_\sigma}{\rho} \pdv{V_\sigma}{\sigma} + \frac{U_\tau}{\rho} \pdv{V_\sigma}{\tau} + U_z \pdv{V_\sigma}{z} + \frac{\tau}{\rho^3} U_\sigma V_\tau - \frac{\sigma}{\rho^3} U_\tau V_\tau \bigg) \\ &\quad\: + \vu{e}_\tau \bigg( \frac{U_\sigma}{\rho} \pdv{V_\tau}{\sigma} + \frac{U_\tau}{\rho} \pdv{V_\tau}{\tau} + U_z \pdv{V_\tau}{z} + \frac{\sigma}{\rho^3} U_\tau V_\sigma - \frac{\tau}{\rho^3} U_\sigma V_\sigma \bigg) \\ &\quad\: + \vu{e}_z \bigg( \frac{U_\sigma}{\rho} \pdv{V_z}{\sigma} + \frac{U_\tau}{\rho} \pdv{V_z}{\tau} + U_z \pdv{V_z}{z} \bigg) \end{aligned} } \end{aligned} 2V=e^σ(1ρ22Vσσ2+1ρ22Vστ2+2Vσz2+2τρ4Vτσ2σρ4VττVσρ4)+e^τ(1ρ22Vτσ2+1ρ22Vττ2+2Vτz22τρ4Vσσ+2σρ4VστVτρ4)+e^z(1ρ22Vzσ2+1ρ22Vzτ2+2Vzz2)\begin{aligned} \boxed{ \begin{aligned} \nabla^2 \vb{V} &= \quad \vu{e}_\sigma \bigg( \frac{1}{\rho^2} \pdvn{2}{V_\sigma}{\sigma} + \frac{1}{\rho^2} \pdvn{2}{V_\sigma}{\tau} + \pdvn{2}{V_\sigma}{z} + \frac{2 \tau}{\rho^4} \pdv{V_\tau}{\sigma} - \frac{2 \sigma}{\rho^4} \pdv{V_\tau}{\tau} - \frac{V_\sigma}{\rho^4} \bigg) \\ &\quad\: + \vu{e}_\tau \bigg( \frac{1}{\rho^2} \pdvn{2}{V_\tau}{\sigma} + \frac{1}{\rho^2} \pdvn{2}{V_\tau}{\tau} + \pdvn{2}{V_\tau}{z} - \frac{2 \tau}{\rho^4} \pdv{V_\sigma}{\sigma} + \frac{2 \sigma}{\rho^4} \pdv{V_\sigma}{\tau} - \frac{V_\tau}{\rho^4} \bigg) \\ &\quad\: + \vu{e}_z \bigg( \frac{1}{\rho^2} \pdvn{2}{V_z}{\sigma} + \frac{1}{\rho^2} \pdvn{2}{V_z}{\tau} + \pdvn{2}{V_z}{z} \bigg) \end{aligned} } \end{aligned} T=e^σ(1ρTσσσ+1ρTτστ+Tzσz+σTσσρ3+τTστρ3+τTτσρ3σTττρ3)+e^τ(1ρTστσ+1ρTτττ+TkτzτTσσρ3+σTστρ3+σTτσρ3+τTττρ3)+e^z(1ρTσzσ+1ρTτzτ+Tzzz+σTσzρ3+τTτzρ3)\begin{aligned} \boxed{ \begin{aligned} \nabla \cdot \overline{\overline{\mathbf{T}}} &= \vu{e}_\sigma \bigg( \frac{1}{\rho} \pdv{T_{\sigma \sigma}}{\sigma} + \frac{1}{\rho} \pdv{T_{\tau \sigma}}{\tau} + \pdv{T_{z \sigma}}{z} + \frac{\sigma T_{\sigma \sigma}}{\rho^3} + \frac{\tau T_{\sigma \tau}}{\rho^3} + \frac{\tau T_{\tau \sigma}}{\rho^3} - \frac{\sigma T_{\tau \tau}}{\rho^3} \bigg) \\ &+ \vu{e}_\tau \bigg( \frac{1}{\rho} \pdv{T_{\sigma \tau}}{\sigma} + \frac{1}{\rho} \pdv{T_{\tau \tau}}{\tau} + \pdv{T_{k \tau}}{z} - \frac{\tau T_{\sigma \sigma}}{\rho^3} + \frac{\sigma T_{\sigma \tau}}{\rho^3} + \frac{\sigma T_{\tau \sigma}}{\rho^3} + \frac{\tau T_{\tau \tau}}{\rho^3} \bigg) \\ &+ \vu{e}_z \bigg( \frac{1}{\rho} \pdv{T_{\sigma z}}{\sigma} + \frac{1}{\rho} \pdv{T_{\tau z}}{\tau} + \pdv{T_{zz}}{z} + \frac{\sigma T_{\sigma z}}{\rho^3} + \frac{\tau T_{\tau z}}{\rho^3} \bigg) \end{aligned} } \end{aligned}

References

  1. M.L. Boas, Mathematical methods in the physical sciences, 2nd edition, Wiley.