diff options
Diffstat (limited to 'content/know/concept/fabry-perot-cavity/index.pdc')
-rw-r--r-- | content/know/concept/fabry-perot-cavity/index.pdc | 128 |
1 files changed, 128 insertions, 0 deletions
diff --git a/content/know/concept/fabry-perot-cavity/index.pdc b/content/know/concept/fabry-perot-cavity/index.pdc new file mode 100644 index 0000000..2f1f84f --- /dev/null +++ b/content/know/concept/fabry-perot-cavity/index.pdc @@ -0,0 +1,128 @@ +--- +title: "Fabry-Pérot cavity" +firstLetter: "F" +publishDate: 2021-09-18 +categories: +- Physics +- Optics + +date: 2021-09-18T00:42:59+02:00 +draft: false +markup: pandoc +--- + +# Fabry-Pérot cavity + +In its simplest form, a **Fabry-Pérot cavity** +is a region of light-transmitting medium +surrounded by two mirrors, +which may transmit some of the incoming light. +Such a setup can be used as e.g. an interferometer or a laser cavity. + + +## Modes of macroscopic cavity + +Consider a Fabry-Pérot cavity large enough +that we can neglect the mirrors' thicknesses, +which have reflection coefficients $r_L$ and $r_R$. +Let $\tilde{n}_C$ be the complex refractive index inside, +and $\tilde{n}_L$ and $\tilde{n}_R$ be the indices outside. +The cavity has length $L$, centered on $x = 0$. + +To find the quasinormal modes, +we make the following ansatz, with mode number $m$: + +$$\begin{aligned} + E_m(x) + = + \begin{cases} + A_m \exp\!(-i \tilde{n}_L \tilde{k}_m x) & \mathrm{if}\; x < -L/2 \\ + B_m \exp\!(i \tilde{n}_C \tilde{k}_m x) + C_m \exp\!(-i \tilde{n}_C \tilde{k}_m x) & \mathrm{if}\; -\!L/2 < x < L/2 \\ + D_m \exp\!(i \tilde{n}_R \tilde{k}_m x) & \mathrm{if}\; L/2 < x + \end{cases} +\end{aligned}$$ + +On the left, $B_m$ is the reflection of $C_m$, +and on the right, $C_m$ is the reflection of $B_m$, +where the reflected amplitude is determined +by the coefficients $r_L$ and $r_L$, respectively: + +$$\begin{aligned} + B_m \exp\!(-i \tilde{n}_C \tilde{k}_m L/2) + &= r_L C_m \exp\!(i \tilde{n}_C \tilde{k}_m L/2) + \\ + C_m \exp\!(-i \tilde{n}_C \tilde{k}_m L/2) + &= r_R B_m \exp\!(i \tilde{n}_C \tilde{k}_m L/2) +\end{aligned}$$ + +These equations might seem to contradict each other. +We recast them into matrix form: + +$$\begin{aligned} + \begin{bmatrix} + 1 & - r_L \exp\!(i \tilde{n}_C \tilde{k}_m L) \\ + - r_R \exp\!(i \tilde{n}_C \tilde{k}_m L) & 1 + \end{bmatrix} + \cdot + \begin{bmatrix} + B_m \\ C_m + \end{bmatrix} + = + \begin{bmatrix} + 0 \\ 0 + \end{bmatrix} +\end{aligned}$$ + +Now, we do not want to be able to find values for $B_m$ and $C_m$ +that satisfy this for a given $\tilde{k}_m$. +Instead, we only want specific values of $\tilde{k}_m$ to be allowed, +corresponding to the cavity's modes. +We thus demand that the determinant to zero: + +$$\begin{aligned} + 0 + &= 1 - r_L r_R \exp\!(i 2 \tilde{n}_C \tilde{k}_m L) +\end{aligned}$$ + +Isolating this for $\tilde{k}_m$ yields the following modes, +where $m$ is an arbitrary integer: + +$$\begin{aligned} + \boxed{ + \tilde{k}_m + = - \frac{\ln\!(r_L r_R) + i 2 \pi m}{i 2 \tilde{n}_C L} + } +\end{aligned}$$ + +These $\tilde{k}_m$ satisfy the matrix equation above. +Thanks to linearity, we can choose one of $B_m$ or $C_m$, +and then the other is determined by the corresponding equation. + +Finally, we look at the light transmitted through the mirrors, +according to $1 \!-\! r_L$ and $1 \!-\! r_R$: + +$$\begin{aligned} + A_m \exp\!(i \tilde{n}_L \tilde{k}_m L/2) + &= (1 - r_L) C_m \exp\!(i \tilde{n}_C \tilde{k}_m L/2) + \\ + D_m \exp\!(i \tilde{n}_R \tilde{k}_m L/2) + &= (1 - r_R) B_m \exp\!(i \tilde{n}_C \tilde{k}_m L/2) +\end{aligned}$$ + +We simply isolate for $A_m$ and $D_m$ respectively, +yielding the following amplitudes: + +$$\begin{aligned} + A_m + &= (1 - r_L) C_m \exp\!\big( i (\tilde{n}_C \!-\! \tilde{n}_L) \tilde{k}_m L/2 \big) + \\ + D_m + &= (1 - r_R) B_m \exp\!\big( i (\tilde{n}_C \!-\! \tilde{n}_R) \tilde{k}_m L/2 \big) +\end{aligned}$$ + + + +## References +1. P.T. Kristensen, K. Herrmann, F. Intravaia, K. Busch, + [Modeling electromagnetic resonators using quasinormal modes](https://doi.org/10.1364/AOP.377940), + 2020, Optical Society of America. |