summaryrefslogtreecommitdiff
path: root/content/know/concept/feynman-diagram
diff options
context:
space:
mode:
Diffstat (limited to 'content/know/concept/feynman-diagram')
-rw-r--r--content/know/concept/feynman-diagram/index.pdc7
1 files changed, 4 insertions, 3 deletions
diff --git a/content/know/concept/feynman-diagram/index.pdc b/content/know/concept/feynman-diagram/index.pdc
index dfb63c1..600be61 100644
--- a/content/know/concept/feynman-diagram/index.pdc
+++ b/content/know/concept/feynman-diagram/index.pdc
@@ -284,12 +284,12 @@ involving the [Matsubara Green's function](/know/concept/matsubara-greens-functi
$$\begin{aligned}
i \hbar G_{s_2 s_1}^0(\vb{r}_2, t_2; \vb{r}_1, t_1)
\:\: &\longrightarrow \:\:
- -\!\hbar G_{s_2 s_1}^0(\vb{r}_2, \tau_2; \vb{r}_1, \tau_1)
+ \hbar G_{s_2 s_1}^0(\vb{r}_2, \tau_2; \vb{r}_1, \tau_1)
= \expval{\mathcal{T} \Big\{ \hat{\Psi}_I(\vb{r}_2, \tau_2) \hat{\Psi}_I^\dagger(\vb{r}_1, \tau_1) \Big\}}
\\
i \hbar G_{s_2 s_1}(\vb{r}_2, t_2; \vb{r}_1, t_1)
\:\: &\longrightarrow \:\:
- -\!\hbar G_{s_2 s_1}(\vb{r}_2, \tau_2; \vb{r}_1, \tau_1)
+ \hbar G_{s_2 s_1}(\vb{r}_2, \tau_2; \vb{r}_1, \tau_1)
= \expval{\mathcal{T} \Big\{ \hat{\Psi}_H(\vb{r}_2, \tau_2) \hat{\Psi}_H^\dagger(\vb{r}_1, \tau_1) \Big\}}
\end{aligned}$$
@@ -312,7 +312,8 @@ and a distinction must be made between
fermionic Matsubara frequencies $i \omega_n^f$ (for $G$ and $G^0$)
and bosonic Matsubara ones $i \omega_n^b$ (for $W$).
This distinction is compatible with frequency conservation,
-since a sum of two fermionic frequencies is always bosonic:
+since a sum of two fermionic frequencies is always bosonic.
+We have:
$$\begin{aligned}
G_{s_2 s_1}^0(\vb{r}_2, \tau_2; \vb{r}_1, \tau_1)