summaryrefslogtreecommitdiff
path: root/content/know/concept/maxwell-bloch-equations
diff options
context:
space:
mode:
Diffstat (limited to 'content/know/concept/maxwell-bloch-equations')
-rw-r--r--content/know/concept/maxwell-bloch-equations/index.pdc60
1 files changed, 23 insertions, 37 deletions
diff --git a/content/know/concept/maxwell-bloch-equations/index.pdc b/content/know/concept/maxwell-bloch-equations/index.pdc
index 020a120..3f090a2 100644
--- a/content/know/concept/maxwell-bloch-equations/index.pdc
+++ b/content/know/concept/maxwell-bloch-equations/index.pdc
@@ -34,8 +34,8 @@ $$\begin{aligned}
\hat{H}_1(t)
= - \hat{\vb{p}} \cdot \vb{E}(t)
\qquad \quad
- \hat{\vb{p}}
- \equiv q \hat{\vb{x}}
+ \vu{p}
+ \equiv q \vu{x}
\qquad \quad
\vb{E}(t)
= \vb{E}_0 \cos\!(\omega t)
@@ -49,10 +49,10 @@ can then be described by:
$$\begin{aligned}
\dv{c_g}{t}
- &= i \frac{q \matrixel{g}{\hat{\vb{x}}}{e} \cdot \vb{E}_0}{2 \hbar} \exp\!\big( i \omega t \!-\! i \omega_0 t \big) \: c_e
+ &= i \frac{q \matrixel{g}{\vu{x}}{e} \cdot \vb{E}_0}{2 \hbar} \exp\!\big( i \omega t \!-\! i \omega_0 t \big) \: c_e
\\
\dv{c_e}{t}
- &= i \frac{q \matrixel{e}{\hat{\vb{x}}}{g} \cdot \vb{E}_0}{2 \hbar} \exp\!\big(\!-\! i \omega t \!+\! i \omega_0 t \big) \: c_g
+ &= i \frac{q \matrixel{e}{\vu{x}}{g} \cdot \vb{E}_0}{2 \hbar} \exp\!\big(\!-\! i \omega t \!+\! i \omega_0 t \big) \: c_g
\end{aligned}$$
We want to rearrange these equations a bit.
@@ -70,11 +70,11 @@ Similarly, we define the transition dipole moment $\vb{p}_0^{-}$:
$$\begin{aligned}
\vb{p}_0^{-}
- \equiv q \matrixel{e}{\vb{x}}{g}
+ \equiv q \matrixel{e}{\vu{x}}{g}
\qquad \quad
\vb{p}_0^{+}
\equiv (\vb{p}_0^{-})^*
- = q \matrixel{g}{\vb{x}}{e}
+ = q \matrixel{g}{\vu{x}}{e}
\end{aligned}$$
With these, the equations for $c_g$ and $c_e$ can be rewritten as shown below.
@@ -238,10 +238,10 @@ $$\begin{aligned}
\vb{p}
&= \matrixel{\Psi}{\hat{\vb{p}}}{\Psi}
\\
- &= q \Big( c_g c_g^* \matrixel{g}{\hat{\vb{x}}}{g} + c_e c_e^* \matrixel{e}{\hat{\vb{x}}}{e}
- + c_g c_e^* \matrixel{e}{\hat{\vb{x}}}{g} \exp\!(i \omega_0 t) + c_e c_g^* \matrixel{g}{\hat{\vb{x}}}{e} \exp\!(-i \omega_0 t) \Big)
+ &= q \Big( c_g c_g^* \matrixel{g}{\vu{x}}{g} + c_e c_e^* \matrixel{e}{\vu{x}}{e}
+ + c_g c_e^* \matrixel{e}{\vu{x}}{g} \exp\!(i \omega_0 t) + c_e c_g^* \matrixel{g}{\vu{x}}{e} \exp\!(-i \omega_0 t) \Big)
\\
- &= q \Big( \rho_{ge} \matrixel{e}{\hat{\vb{x}}}{g} + \rho_{eg} \matrixel{g}{\hat{\vb{x}}}{e} \Big)
+ &= q \Big( \rho_{ge} \matrixel{e}{\vu{x}}{g} + \rho_{eg} \matrixel{g}{\vu{x}}{e} \Big)
= \vb{p}_0^{-} \rho_{ge}(t) + \vb{p}_0^{+} \rho_{eg}(t)
\equiv \vb{p}^{-}(t) + \vb{p}^{+}(t)
\end{aligned}$$
@@ -366,41 +366,27 @@ Inserting the definition $\vb{D} = \varepsilon_0 \vb{E} + \vb{P}$
together with Ohm's law $\vb{J}_\mathrm{free} = \sigma \vb{E}$ yields:
$$\begin{aligned}
- \nabla \cross \big( \nabla \cross \vb{E} \big)
- = - \mu_0 \sigma \pdv{\vb{E}}{t} - \mu_0 \varepsilon_0 \pdv[2]{\vb{E}}{t} - \mu_0 \pdv[2]{\vb{P}}{t}
+ \boxed{
+ \nabla \cross \big( \nabla \cross \vb{E} \big)
+ = - \mu_0 \sigma \pdv{\vb{E}}{t} - \mu_0 \varepsilon_0 \pdv[2]{\vb{E}}{t} - \mu_0 \pdv[2]{\vb{P}}{t}
+ }
\end{aligned}$$
Where $\sigma$ is the medium's conductivity, if any;
many authors assume $\sigma = 0$.
-Next, we rewrite the left side using a vector identity,
-and assume no net charge $\nabla \cdot \vb{E} = 0$:
-
-$$\begin{aligned}
- \nabla^2 \vb{E} - \nabla \big( \nabla \cdot \vb{E} \big)
- = \nabla^2 \vb{E}
- = \mu_0 \sigma \pdv{\vb{E}}{t} + \mu_0 \varepsilon_0 \pdv[2]{\vb{E}}{t} + \mu_0 \pdv[2]{\vb{P}}{t}
-\end{aligned}$$
-
-After some rearranging,
-we arrive at a variant of the electromagnetic wave equation:
-
-$$\begin{aligned}
- \nabla^2 \vb{E} - \mu_0 \sigma \pdv{\vb{E}}{t} - \mu_0 \varepsilon_0 \pdv[2]{\vb{E}}{t}
- &= \mu_0 \pdv[2]{\vb{P}}{t}
-\end{aligned}$$
-
It is trivial to show that $\vb{E}$ and $\vb{P}$
can be replaced by $\vb{E}^{+}$ and $\vb{P}^{+}$.
-It is also simple to convert
-the dipole $\vb{p}^{+}$ and inversion $d$
-into their macroscopic versions $\vb{P}^{+}$ and $D$:
+
+It is also simple to convert $\vb{p}^{+}$ and $d$
+into the macroscopic polarization $\vb{P}^{+}$ and total inversion $D$
+by summing over the atoms:
$$\begin{aligned}
- \vb{P}^{+}(\vb{r}, t)
- = \sum_{n} \vb{p}^{+}_n \: \delta(\vb{r} \!-\! \vb{r}_n)
- \qquad \quad
- D(\vb{r}, t)
- = \sum_{n} d_n \: \delta(\vb{r} \!-\! \vb{r}_n)
+ \vb{P}^{+}(\vb{x}, t)
+ &= \sum_{n} \vb{p}^{+}_n \: \delta(\vb{x} - \vb{x}_n)
+ \\
+ D(\vb{x}, t)
+ &= \sum_{n} d_n \: \delta(\vb{x} - \vb{x}_n)
\end{aligned}$$
We thus arrive at the **Maxwell-Bloch equations**,
@@ -410,7 +396,7 @@ $$\begin{aligned}
\boxed{
\begin{aligned}
\mu_0 \pdv[2]{\vb{P}^{+}}{t}
- &= \nabla^2 \vb{E}^{+} - \mu_0 \sigma \pdv{\vb{E}^{+}}{t} - \mu_0 \varepsilon_0 \pdv[2]{\vb{E}^{+}}{t}
+ &= - \nabla \cross \nabla \cross \vb{E}^{+} - \mu_0 \sigma \pdv{\vb{E}^{+}}{t} - \mu_0 \varepsilon_0 \pdv[2]{\vb{E}^{+}}{t}
\\
\pdv{\vb{P}^{+}}{t}
&= - \Big( \gamma_\perp + i \omega_0 \Big) \vb{P}^{+}