summaryrefslogtreecommitdiff
path: root/content/know/concept/optical-wave-breaking
diff options
context:
space:
mode:
Diffstat (limited to 'content/know/concept/optical-wave-breaking')
-rw-r--r--content/know/concept/optical-wave-breaking/index.pdc6
1 files changed, 3 insertions, 3 deletions
diff --git a/content/know/concept/optical-wave-breaking/index.pdc b/content/know/concept/optical-wave-breaking/index.pdc
index 30305f5..ecd5a4f 100644
--- a/content/know/concept/optical-wave-breaking/index.pdc
+++ b/content/know/concept/optical-wave-breaking/index.pdc
@@ -40,7 +40,7 @@ small waves start "falling off" the edge of the pulse,
hence the name *wave breaking*:
<a href="pheno-break-inst.jpg">
-<img src="pheno-break-inst-small.jpg">
+<img src="pheno-break-inst-small.jpg" style="width:100%">
</a>
Several interesting things happen around this moment.
@@ -59,7 +59,7 @@ which eventually melt together, leading to a trapezoid shape in the $t$-domain.
Dispersive broadening then continues normally:
<a href="pheno-break-sgram.jpg">
-<img src="pheno-break-sgram-small.jpg" style="width:80%;display:block;margin:auto;">
+<img src="pheno-break-sgram-small.jpg" style="width:80%">
</a>
We call the distance at which the wave breaks $L_\mathrm{WB}$,
@@ -189,7 +189,7 @@ This prediction for $L_\mathrm{WB}$ appears to agree well
with the OWB observed in the simulation:
<a href="pheno-break.jpg">
-<img src="pheno-break-small.jpg">
+<img src="pheno-break-small.jpg" style="width:100%">
</a>
Because all spectral broadening up to $L_\mathrm{WB}$ is caused by SPM,