summaryrefslogtreecommitdiff
path: root/content/know/concept/runge-kutta-method/index.pdc
diff options
context:
space:
mode:
Diffstat (limited to 'content/know/concept/runge-kutta-method/index.pdc')
-rw-r--r--content/know/concept/runge-kutta-method/index.pdc267
1 files changed, 267 insertions, 0 deletions
diff --git a/content/know/concept/runge-kutta-method/index.pdc b/content/know/concept/runge-kutta-method/index.pdc
new file mode 100644
index 0000000..ac2eabf
--- /dev/null
+++ b/content/know/concept/runge-kutta-method/index.pdc
@@ -0,0 +1,267 @@
+---
+title: "Runge-Kutta method"
+firstLetter: "R"
+publishDate: 2022-03-10
+categories:
+- Mathematics
+- Numerical methods
+
+date: 2022-03-07T14:10:18+01:00
+draft: false
+markup: pandoc
+---
+
+# Runge-Kutta method
+
+A **Runge-Kutta method** (RKM) is a popular approach
+to numerically solving systems of ordinary differential equations.
+Let $\vb{x}(t)$ be the vector we want to find,
+governed by $\vb{f}(t, \vb{x})$:
+
+$$\begin{aligned}
+ \vb{x}'(t)
+ = \vb{f}\big(t, \vb{x}(t)\big)
+\end{aligned}$$
+
+Like in all numerical methods, the $t$-axis is split into discrete steps.
+If a step has size $h$, then as long as $h$ is small enough,
+we can make the following approximation:
+
+$$\begin{aligned}
+ \vb{x}'(t) + a h \vb{x}''(t)
+ &\approx \vb{x}'(t \!+\! a h)
+ \\
+ &\approx \vb{f}\big(t \!+\! a h,\, \vb{x}(t \!+\! a h)\big)
+ \\
+ &\approx \vb{f}\big(t \!+\! a h,\, \vb{x}(t) \!+\! a h \vb{x}'(t) \big)
+\end{aligned}$$
+
+For sufficiently small $h$,
+higher-order derivates can also be included,
+albeit still at $t \!+\! a h$:
+
+$$\begin{aligned}
+ \vb{x}'(t) + a h \vb{x}''(t) + b h^2 \vb{x}'''(t)
+ &\approx \vb{f}\big(t \!+\! a h,\, \vb{x}(t) \!+\! a h \vb{x}'(t) \!+\! b h^2 \vb{x}''(t) \big)
+\end{aligned}$$
+
+Although these approximations might seem innocent,
+they actually make it quite complicated to determine the error order of a given RKM.
+
+Now, consider a Taylor expansion around the current $t$,
+truncated at a chosen order $n$:
+
+$$\begin{aligned}
+ \vb{x}(t \!+\! h)
+ &= \vb{x}(t) + h \vb{x}'(t) + \frac{h^2}{2} \vb{x}''(t) + \frac{h^3}{6} \vb{x}'''(t) + \:...\, + \frac{h^n}{n!} \vb{x}^{(n)}(t)
+ \\
+ &= \vb{x}(t) + h \bigg[ \vb{x}'(t) + \frac{h}{2} \vb{x}''(t) + \frac{h^2}{6} \vb{x}'''(t) + \:...\, + \frac{h^{n-1}}{n!} \vb{x}^{(n)}(t) \bigg]
+\end{aligned}$$
+
+We are free to split the terms as follows,
+choosing real factors $\omega_{mj}$ subject to $\sum_{j} \omega_{mj} = 1$:
+
+$$\begin{aligned}
+ \vb{x}(t \!+\! h)
+ &= \vb{x} + h \bigg[ \sum_{j = 1}^{N_1} \omega_{1j} \, \vb{x}'
+ + \frac{h}{2} \sum_{j = 1}^{N_2} \omega_{2j} \, \vb{x}''
+ + \:...\, + \frac{h^{n-1}}{n!} \sum_{j = 1}^{N_n} \omega_{nj} \, \vb{x}^{(n)} \bigg]
+\end{aligned}$$
+
+Where the integers $N_1,...,N_n$ are also free to choose,
+but for reasons that will become clear later,
+the most general choice for an RKM is $N_1 = n$, $N_n = 1$, and:
+
+$$\begin{aligned}
+ N_{n-1}
+ = N_n \!+\! 2
+ ,\quad
+ \cdots
+ ,\quad
+ N_{n-m}
+ = N_{n-m+1} \!+\! m \!+\! 1
+ ,\quad
+ \cdots
+ ,\quad
+ N_{2}
+ = N_3 \!+\! n \!-\! 1
+\end{aligned}$$
+
+In other words, $N_{n-m}$ is the $m$th triangular number.
+This is not so important,
+since this is not a practical way to describe RKMs,
+but it is helpful to understand how they work.
+
+
+## Example derivation
+
+For example, let us truncate at $n = 3$,
+such that $N_1 = 3$, $N_2 = 3$ and $N_3 = 1$.
+The following derivation is very general,
+except it requires all $\alpha_j \neq 0$.
+Renaming $\omega_{mj}$, we start from:
+
+$$\begin{aligned}
+ \vb{x}(t \!+\! h)
+ &= \vb{x} + h \bigg[ (\alpha_1 + \alpha_2 + \alpha_3) \, \vb{x}'
+ + \frac{h}{2} (\beta_2 + \beta_{31} + \beta_{32}) \, \vb{x}''
+ + \frac{h^2}{6} \gamma_3 \, \vb{x}''' \bigg]
+ \\
+ &= \vb{x} + h \bigg[ \alpha_1 \vb{x}'
+ + \Big( \alpha_2 \vb{x}' + \frac{h}{2} \beta_2 \vb{x}'' \Big)
+ + \Big( \alpha_3 \vb{x}' + \frac{h}{2} (\beta_{31} + \beta_{32}) \vb{x}'' + \frac{h^2}{6} \gamma_3 \vb{x}''' \Big) \bigg]
+\end{aligned}$$
+
+As discussed earlier, the parenthesized expressions
+can be approximately rewritten with $\vb{f}$:
+
+$$\begin{aligned}
+ \vb{x}(t \!+\! h)
+ = \vb{x} + h &\bigg[ \alpha_1 \vb{f}(t, \vb{x})
+ + \alpha_2 \vb{f}\Big( t \!+\! \frac{h \beta_2}{2 \alpha_2}, \;
+ \vb{x} \!+\! \frac{h \beta_2}{2 \alpha_2} \vb{x}' \Big)
+ \\
+ & + \alpha_3 \vb{f}\Big( t \!+\! \frac{h (\beta_{31} \!\!+\!\! \beta_{32})}{2 \alpha_3}, \;
+ \vb{x} \!+\! \frac{h \beta_{31}}{2 \alpha_3} \vb{x}' \!+\! \frac{h \beta_{32}}{2 \alpha_3} \vb{x}'
+ \!+\! \frac{h^2 \gamma_3}{6 \alpha_3} \vb{x}'' \Big) \bigg]
+ \\
+ = \vb{x} + h &\bigg[ \alpha_1 \vb{k}_1
+ + \alpha_2 \vb{f}\Big( t \!+\! \frac{h \beta_2}{2 \alpha_2}, \;
+ \vb{x} \!+\! \frac{h \beta_2}{2 \alpha_2} \vb{k}_1 \!\Big)
+ \\
+ & + \alpha_3 \vb{f}\Big( t \!+\! \frac{h (\beta_{31} \!\!+\!\! \beta_{32})}{2 \alpha_3}, \;
+ \vb{x} \!+\! \frac{h \beta_{31}}{2 \alpha_3} \vb{k}_1 \!+\! \frac{h \beta_{32}}{2 \alpha_3}
+ \vb{f}\Big( t \!+\! \frac{h \gamma_3}{3 \beta_{32}}, \;
+ \vb{x} \!+\! \frac{h \gamma_3}{3 \beta_{32}} \vb{k}_1 \!\Big) \!\Big) \bigg]
+\end{aligned}$$
+
+Here, we can see an opportunity to save some computational time
+by reusing an evaluation of $\vb{f}$.
+Technically, this is optional, but it would be madness not to,
+so we choose:
+
+$$\begin{aligned}
+ \frac{\beta_2}{2 \alpha_2}
+ = \frac{\gamma_3}{3 \beta_{32}}
+\end{aligned}$$
+
+Such that the next step of $\vb{x}$'s numerical solution is as follows,
+recalling that $\sum_{j} \alpha_j = 1$:
+
+$$\begin{aligned}
+ \boxed{
+ \vb{x}(t \!+\! h)
+ = \vb{x}(t) + h \Big( \alpha_1 \vb{k}_1 + \alpha_2 \vb{k}_2 + \alpha_3 \vb{k}_3 \Big)
+ }
+\end{aligned}$$
+
+Where $\vb{k}_1$, $\vb{k}_2$ and $\vb{k}_3$ are different estimates
+of the average slope $\vb{x}'$ between $t$ and $t \!+\! h$,
+whose weighted average is used to make the $t$-step.
+They are given by:
+
+$$\begin{aligned}
+ \boxed{
+ \begin{aligned}
+ \vb{k}_1
+ &\equiv \vb{f}(t, \vb{x})
+ \\
+ \vb{k}_2
+ &\equiv \vb{f}\bigg( t + \frac{h \beta_2}{2 \alpha_2}, \;
+ \vb{x} + \frac{h \beta_2}{2 \alpha_2} \vb{k}_1 \bigg)
+ \\
+ \vb{k}_3
+ &\equiv \vb{f}\bigg( t + \frac{h (\beta_{31} \!\!+\!\! \beta_{32})}{2 \alpha_3}, \;
+ \vb{x} + \frac{h \beta_{31}}{2 \alpha_3} \vb{k}_1 + \frac{h \beta_{32}}{2 \alpha_3} \vb{k}_2 \bigg)
+ \end{aligned}
+ }
+\end{aligned}$$
+
+Despite the contraints on $\alpha_j$ and $\beta_j$,
+there is an enormous freedom of choice here,
+all leading to valid RKMs, although not necessarily good ones.
+
+
+## General form
+
+A more practical description goes as follows:
+in an $s$-stage RKM, a weighted average is taken
+of up to $s$ slope estimates $\vb{k}_j$ with weights $b_j$.
+Let $\sum_{j} b_j = 1$, then:
+
+$$\begin{aligned}
+ \boxed{
+ \vb{x}(t \!+\! h)
+ = \vb{x}(t) + h \sum_{j = 1}^{s} b_j \vb{k}_j
+ }
+\end{aligned}$$
+
+Where the estimates $\vb{k}_1, ..., \vb{k}_s$
+depend on each other, and are calculated one by one as:
+
+$$\begin{aligned}
+ \boxed{
+ \vb{k}_m
+ = \vb{f}\bigg( t + h c_m,\; \vb{x} + h \sum_{j = 1}^{m - 1} a_{mj} \vb{k}_j \bigg)
+ }
+\end{aligned}$$
+
+With $c_1 = 1$ and $\sum_{j = 1} a_{mj} = c_m$.
+Writing this out for the first few $m$, the pattern is clear:
+
+$$\begin{aligned}
+ \vb{k}_1
+ &= \vb{f}(t, \vb{x})
+ \\
+ \vb{k}_2
+ &= \vb{f}\big( t + h c_2,\; \vb{x} + h a_{21} \vb{k}_1 \big)
+ \\
+ \vb{k}_3
+ &= \vb{f}\big( t + h c_3,\; \vb{x} + h (a_{31} \vb{k}_1 + a_{32} \vb{k}_2) \big)
+ \\
+ \vb{k}_4
+ &= \:...
+\end{aligned}$$
+
+The coefficients of a given RKM are usually
+compactly represented in a **Butcher tableau**:
+
+$$\begin{aligned}
+ \begin{array}{c|ccc}
+ 0 \\
+ c_2 & a_{21} \\
+ c_3 & a_{31} & a_{32} \\
+ \vdots & \vdots & \vdots & \ddots \\
+ c_s & a_{s1} & a_{s2} & \cdots & a_{s,s-1} \\
+ \hline
+ & b_1 & b_2 & \cdots & b_{s-1} & b_s
+ \end{array}
+\end{aligned}$$
+
+Each RKM has an **order** $p$,
+such that the global truncation error is $\mathcal{O}(h^p)$,
+i.e. the accumulated difference between the numerical
+and the exact solutions is proportional to $h^p$.
+
+The surprise is that $p$ need not be equal to the Taylor expansion order $n$,
+nor the stage count $s$.
+Typically, $s = n$ for computational efficiency, but $s \ge n$ is possible in theory.
+
+The order $p$ of a given RKM is determined by
+a complicated set of equations on the coefficients,
+and the lowest possible $s$ for a desired $p$
+is in fact only partially known.
+For $p \le 4$ the bound is $s \ge p$,
+whereas for $p \ge 5$ the only proven bound is $s \ge p \!+\! 1$,
+but for $p \ge 7$ no such efficient methods have been found so far.
+
+If you need an RKM with a certain order, look it up.
+There exist many efficient methods for $p \le 4$ where $s = p$,
+and although less popular, higher $p$ are also available.
+
+
+
+## References
+1. J.C. Butcher,
+ *Numerical methods for ordinary differential equations*, 3rd edition,
+ Wiley.