summaryrefslogtreecommitdiff
path: root/source/know/concept/bell-state
diff options
context:
space:
mode:
Diffstat (limited to 'source/know/concept/bell-state')
-rw-r--r--source/know/concept/bell-state/index.md41
1 files changed, 21 insertions, 20 deletions
diff --git a/source/know/concept/bell-state/index.md b/source/know/concept/bell-state/index.md
index f454264..fa289de 100644
--- a/source/know/concept/bell-state/index.md
+++ b/source/know/concept/bell-state/index.md
@@ -16,16 +16,16 @@ $$\begin{aligned}
\boxed{
\begin{aligned}
\ket{\Phi^{\pm}}
- &= \frac{1}{\sqrt{2}} \Big( \Ket{0}_A \Ket{0}_B \pm \Ket{1}_A \Ket{1}_B \Big)
+ &= \frac{1}{\sqrt{2}} \Big( \ket{0}_A \ket{0}_B \pm \ket{1}_A \ket{1}_B \Big)
\\
\ket{\Psi^{\pm}}
- &= \frac{1}{\sqrt{2}} \Big( \Ket{0}_A \Ket{1}_B \pm \Ket{1}_A \Ket{0}_B \Big)
+ &= \frac{1}{\sqrt{2}} \Big( \ket{0}_A \ket{1}_B \pm \ket{1}_A \ket{0}_B \Big)
\end{aligned}
}
\end{aligned}$$
-Where e.g. $$\Ket{0}_A \Ket{1}_B = \Ket{0}_A \otimes \Ket{1}_B$$
-is the tensor product of qubit $$A$$ in state $$\Ket{0}$$ and $$B$$ in $$\Ket{1}$$.
+Where e.g. $$\ket{0}_A \ket{1}_B = \ket{0}_A \otimes \ket{1}_B$$
+is the tensor product of qubit $$A$$ in state $$\ket{0}$$ and $$B$$ in $$\ket{1}$$.
These states form an orthonormal basis for the two-qubit
[Hilbert space](/know/concept/hilbert-space/).
@@ -37,7 +37,7 @@ Consider the following pure [density operator](/know/concept/density-operator/):
$$\begin{aligned}
\hat{\rho}
= \ket{\Phi^{+}} \bra{\Phi^{+}}
- &= \frac{1}{2} \Big( \Ket{0}_A \Ket{0}_B + \Ket{1}_A \Ket{1}_B \Big) \Big( \Bra{0}_A \Bra{0}_B + \Bra{1}_A \Bra{1}_B \Big)
+ &= \frac{1}{2} \Big( \ket{0}_A \ket{0}_B + \ket{1}_A \ket{1}_B \Big) \Big( \bra{0}_A \bra{0}_B + \bra{1}_A \bra{1}_B \Big)
\end{aligned}$$
The reduced density operator $$\hat{\rho}_A$$ of qubit $$A$$ is then calculated as follows:
@@ -45,12 +45,12 @@ The reduced density operator $$\hat{\rho}_A$$ of qubit $$A$$ is then calculated
$$\begin{aligned}
\hat{\rho}_A
&= \Tr_B(\hat{\rho})
- = \sum_{b = 0, 1} \Bra{b}_B \Big( \ket{\Phi^{+}} \bra{\Phi^{+}} \Big) \Ket{b}_B
+ = \sum_{b = 0, 1} \bra{b}_B \Big( \ket{\Phi^{+}} \bra{\Phi^{+}} \Big) \ket{b}_B
\\
- &= \sum_{b = 0, 1} \Big( \Ket{0}_A \Inprod{b}{0}_B + \Ket{1}_A \Inprod{b}{1}_B \Big)
- \Big( \Bra{0}_A \Inprod{0}{b}_B + \Bra{1}_A \Inprod{1}{b}_B \Big)
+ &= \sum_{b = 0, 1} \Big( \ket{0}_A \inprod{b}{0}_B + \ket{1}_A \inprod{b}{1}_B \Big)
+ \Big( \bra{0}_A \inprod{0}{b}_B + \bra{1}_A \inprod{1}{b}_B \Big)
\\
- &= \frac{1}{2} \Big( \Ket{0}_A \Bra{0}_A + \Ket{1}_A \Bra{1}_A \Big)
+ &= \frac{1}{2} \Big( \ket{0}_A \bra{0}_A + \ket{1}_A \bra{1}_A \Big)
= \frac{1}{2} \hat{I}
\end{aligned}$$
@@ -59,35 +59,36 @@ The same holds for the other three Bell states,
and is equally true for qubit $$B$$.
This means that a measurement of qubit $$A$$
-has a 50-50 chance to yield $$\Ket{0}$$ or $$\Ket{1}$$.
+has a 50-50 chance to yield $$\ket{0}$$ or $$\ket{1}$$.
However, due to the entanglement,
measuring $$A$$ also has consequences for qubit $$B$$:
$$\begin{aligned}
- \big| \Bra{0}_A \! \Bra{0}_B \cdot \ket{\Phi^{+}} \big|^2
- &= \frac{1}{2} \Big( \Inprod{0}{0}_A \Inprod{0}{0}_B + \Inprod{0}{1}_A \Inprod{0}{1}_B \Big)^2
+ \big| \bra{0}_A \! \bra{0}_B \cdot \ket{\Phi^{+}} \big|^2
+ &= \frac{1}{2} \Big( \inprod{0}{0}_A \inprod{0}{0}_B + \inprod{0}{1}_A \inprod{0}{1}_B \Big)^2
= \frac{1}{2}
\\
- \big| \Bra{0}_A \! \Bra{1}_B \cdot \ket{\Phi^{+}} \big|^2
- &= \frac{1}{2} \Big( \Inprod{0}{0}_A \Inprod{1}{0}_B + \Inprod{0}{1}_A \Inprod{1}{1}_B \Big)^2
+ \big| \bra{0}_A \! \bra{1}_B \cdot \ket{\Phi^{+}} \big|^2
+ &= \frac{1}{2} \Big( \inprod{0}{0}_A \inprod{1}{0}_B + \inprod{0}{1}_A \inprod{1}{1}_B \Big)^2
= 0
\\
- \big| \Bra{1}_A \! \Bra{0}_B \cdot \ket{\Phi^{+}} \big|^2
- &= \frac{1}{2} \Big( \Inprod{1}{0}_A \Inprod{0}{0}_B + \Inprod{1}{1}_A \Inprod{0}{1}_B \Big)^2
+ \big| \bra{1}_A \! \bra{0}_B \cdot \ket{\Phi^{+}} \big|^2
+ &= \frac{1}{2} \Big( \inprod{1}{0}_A \inprod{0}{0}_B + \inprod{1}{1}_A \inprod{0}{1}_B \Big)^2
= 0
\\
- \big| \Bra{1}_A \! \Bra{1}_B \cdot \ket{\Phi^{+}} \big|^2
- &= \frac{1}{2} \Big( \Inprod{1}{0}_A \Inprod{1}{0}_B + \Inprod{1}{1}_A \Inprod{1}{1}_B \Big)^2
+ \big| \bra{1}_A \! \bra{1}_B \cdot \ket{\Phi^{+}} \big|^2
+ &= \frac{1}{2} \Big( \inprod{1}{0}_A \inprod{1}{0}_B + \inprod{1}{1}_A \inprod{1}{1}_B \Big)^2
= \frac{1}{2}
\end{aligned}$$
-As an example, if $$A$$ collapses into $$\Ket{0}$$ due to a measurement,
-then $$B$$ instantly also collapses into $$\Ket{0}$$, never $$\Ket{1}$$,
+As an example, if $$A$$ collapses into $$\ket{0}$$ due to a measurement,
+then $$B$$ instantly also collapses into $$\ket{0}$$, never $$\ket{1}$$,
even if it was not measured.
This was a specific example for $$\ket{\Phi^{+}}$$,
but analogous results can be found for the other Bell states.
+
## References
1. J.B. Brask,
*Quantum information: lecture notes*,