summaryrefslogtreecommitdiff
path: root/source/know/concept/interaction-picture
diff options
context:
space:
mode:
Diffstat (limited to 'source/know/concept/interaction-picture')
-rw-r--r--source/know/concept/interaction-picture/index.md46
1 files changed, 24 insertions, 22 deletions
diff --git a/source/know/concept/interaction-picture/index.md b/source/know/concept/interaction-picture/index.md
index 8428bf3..a3bb260 100644
--- a/source/know/concept/interaction-picture/index.md
+++ b/source/know/concept/interaction-picture/index.md
@@ -39,14 +39,14 @@ Basically, any way of splitting $$\hat{H}_S$$ is valid
as long as $$\hat{H}_{0, S}$$ is time-independent,
but only a few ways are useful.
-We now define the unitary conversion operator $$\hat{U}(t)$$ as shown below.
-Note its similarity to the [time-evolution operator](/know/concept/time-evolution-operator/)
-$$\hat{K}_S(t)$$, but with the opposite sign in the exponent:
+We now define the unitary conversion operator $$\hat{U}_0(t)$$ as shown below.
+Note its similarity to the
+[time-evolution operator](/know/concept/time-evolution-operator/) $$\hat{K}_S(t)$$:
$$\begin{aligned}
\boxed{
- \hat{U}(t)
- \equiv \exp\!\bigg( \frac{i}{\hbar} \hat{H}_{0,S} t \bigg)
+ \hat{U}_0(t)
+ \equiv \exp\!\bigg( \!-\! \frac{i}{\hbar} \hat{H}_{0,S} t \bigg)
}
\end{aligned}$$
@@ -56,17 +56,17 @@ and operators $$\hat{L}_I(t)$$ are then defined as follows:
$$\begin{aligned}
\boxed{
\Ket{\psi_I(t)}
- \equiv \hat{U}(t) \Ket{\psi_S(t)}
+ \equiv \hat{U}_0^\dagger(t) \Ket{\psi_S(t)}
}
\qquad\qquad
\boxed{
\hat{L}_I(t)
- \equiv \hat{U}(t) \: \hat{L}_S(t) \: \hat{U}{}^\dagger(t)
+ \equiv \hat{U}_0^\dagger(t) \: \hat{L}_S(t) \: \hat{U}{}_0(t)
}
\end{aligned}$$
Because $$\hat{H}_{0, S}$$ is time-independent,
-it commutes with $$\hat{U}(t)$$,
+it commutes with $$\hat{U}_0$$,
so conveniently $$\hat{H}_{0, I} = \hat{H}_{0, S}$$.
@@ -78,25 +78,25 @@ we differentiate it and multiply by $$i \hbar$$:
$$\begin{aligned}
i \hbar \dv{}{t} \Ket{\psi_I}
- &= i \hbar \dv{\hat{U}}{t} \Ket{\psi_S} + \hat{U} \bigg( i \hbar \dv{}{t}\Ket{\psi_S} \bigg)
+ &= i \hbar \dv{\hat{U}_0^\dagger}{t} \Ket{\psi_S} + \hat{U}_0^\dagger \bigg( i \hbar \dv{}{t}\Ket{\psi_S} \bigg)
\end{aligned}$$
-We insert the definition of $$\hat{U}$$ in the first term
+We insert the definition of $$\hat{U}_0$$ in the first term
and the Schrödinger equation into the second,
-and use the fact that $$\comm{\hat{H}_{0, S}}{\hat{U}} = 0$$
+and use the fact that $$\comm{\hat{H}_{0, S}}{\hat{U}_0} = 0$$
thanks to the time-independence of $$\hat{H}_{0, S}$$:
$$\begin{aligned}
i \hbar \dv{}{t} \Ket{\psi_I}
- &= - \hat{H}_{0,S} \hat{U} \Ket{\psi_S} + \hat{U} \hat{H}_S \Ket{\psi_S}
+ &= - \hat{H}_{0,S} \hat{U}_0^\dagger \Ket{\psi_S} + \hat{U}_0^\dagger \hat{H}_S \Ket{\psi_S}
\\
- &= \hat{U} \big( \!-\! \hat{H}_{0,S} + \hat{H}_S \big) \Ket{\psi_S}
+ &= \hat{U}_0^\dagger \big( \!-\! \hat{H}_{0,S} + \hat{H}_S \big) \Ket{\psi_S}
\\
- &= \hat{U} \big( \hat{H}_{1,S} \big) \hat{U}{}^\dagger \hat{U} \Ket{\psi_S}
+ &= \hat{U}_0^\dagger \hat{H}_{1,S} \big( \hat{U}_0 \hat{U}_0^\dagger \big) \Ket{\psi_S}
\end{aligned}$$
Which leads to an analogue of the Schrödinger equation,
-with $$\hat{H}_{1,I} = \hat{U} \hat{H}_{1,S} \hat{U}{}^\dagger$$:
+with $$\hat{H}_{1,I} = \hat{U}_0^\dagger \hat{H}_{1,S} \hat{U}_0$$:
$$\begin{aligned}
\boxed{
@@ -110,11 +110,11 @@ in order to describe its evolution in time:
$$\begin{aligned}
\dv{\hat{L}_I}{t}
- &= \dv{\hat{U}}{t} \hat{L}_S \hat{U}{}^\dagger + \hat{U} \hat{L}_S \dv{\hat{U}{}^\dagger}{t}
- + \hat{U} \dv{\hat{L}_S}{t} \hat{U}{}^\dagger
+ &= \dv{\hat{U}_0^\dagger}{t} \hat{L}_S \hat{U}_0 + \hat{U}_0^\dagger \hat{L}_S \dv{\hat{U}_0}{t}
+ + \hat{U}_0^\dagger \dv{\hat{L}_S}{t} \hat{U}_0
\\
- &= \frac{i}{\hbar} \hat{U} \hat{H}_{0,S} \big( \hat{U}{}^\dagger \hat{U} \big) \hat{L}_S \hat{U}{}^\dagger
- - \frac{i}{\hbar} \hat{U} \hat{L}_S \big( \hat{U}{}^\dagger \hat{U} \big) \hat{H}_{0,S} \hat{U}{}^\dagger
+ &= \frac{i}{\hbar} \hat{U}_0^\dagger \hat{H}_{0,S} \big( \hat{U}_0 \hat{U}_0^\dagger \big) \hat{L}_S \hat{U}_0
+ - \frac{i}{\hbar} \hat{U}_0^\dagger \hat{L}_S \big( \hat{U}_0 \hat{U}_0^\dagger \big) \hat{H}_{0,S} \hat{U}_0
+ \bigg( \dv{\hat{L}_S}{t} \bigg)_I
\\
&= \frac{i}{\hbar} \hat{H}_{0,I} \hat{L}_I
@@ -144,13 +144,15 @@ can be solved in isolation in a kind of Schrödinger picture.
What about the time evolution operator $$\hat{K}_S(t)$$?
Its interaction version $$\hat{K}_I(t)$$
is unsurprisingly obtained by the standard transform
-$$\hat{K}_I = \hat{U} \hat{K}_S \hat{U}^\dagger$$:
+$$\hat{K}_I = \hat{U}_0^\dagger \hat{K}_S \hat{U}_0$$:
$$\begin{aligned}
\Ket{\psi_I(t)}
- &= \hat{U}(t) \Ket{\psi_S(t)}
+ &= \hat{U}_0^\dagger(t) \Ket{\psi_S(t)}
\\
- &= \hat{U}(t) \: \hat{K}_S(t) \: \hat{U}^\dagger(t) \Ket{\psi_I(0)}
+ &= \hat{U}_0^\dagger(t) \: \hat{K}_S(t) \Ket{\psi_S(0)}
+ \\
+ &= \hat{U}_0^\dagger(t) \: \hat{K}_S(t) \: \hat{U}_0(t) \: \hat{U}_0^\dagger(t) \Ket{\psi_S(0)}
\\
&\equiv \hat{K}_I(t) \Ket{\psi_I(0)}
\end{aligned}$$