summaryrefslogtreecommitdiff
path: root/source/know/concept/orthogonal-curvilinear-coordinates
diff options
context:
space:
mode:
Diffstat (limited to 'source/know/concept/orthogonal-curvilinear-coordinates')
-rw-r--r--source/know/concept/orthogonal-curvilinear-coordinates/index.md250
1 files changed, 125 insertions, 125 deletions
diff --git a/source/know/concept/orthogonal-curvilinear-coordinates/index.md b/source/know/concept/orthogonal-curvilinear-coordinates/index.md
index 675b83a..c7299ee 100644
--- a/source/know/concept/orthogonal-curvilinear-coordinates/index.md
+++ b/source/know/concept/orthogonal-curvilinear-coordinates/index.md
@@ -910,131 +910,6 @@ Dot-multiplying by $$\vu{e}_j$$ isolates the $$c_j$$-component and gives the des
-## Divergence of a tensor
-
-It also possible to take the divergence of a 2nd-order tensor $$\overline{\overline{\mathbf{T}}}$$,
-yielding a vector with these components in $$(c_1, c_2, c_3)$$:
-
-$$\begin{aligned}
- \boxed{
- (\nabla \cdot \overline{\overline{\mathbf{T}}})_j
- = \sum_{k} \frac{1}{h_k} \pdv{T_{kj}}{c_k}
- + \sum_{k \neq j} \frac{T_{jk}}{h_j h_k} \pdv{h_j}{c_k}
- - \sum_{k \neq j} \frac{T_{kk}}{h_j h_k} \pdv{h_k}{c_j}
- + \sum_{k} \sum_{l \neq k} \frac{T_{lj}}{h_k h_l} \pdv{h_k}{c_l}
- }
-\end{aligned}$$
-
-{% include proof/start.html id="proof-div-tensor" -%}
-From our earlier calculation of $$\nabla f$$,
-we know how to express the del $$\nabla$$ in $$(c_1, c_2, c_3)$$.
-Now we simply take the dot product and evaluate:
-
-$$\begin{aligned}
- \nabla \cdot \overline{\overline{\mathbf{T}}}
- &= \bigg( \vu{e}_1 \frac{1}{h_1} \pdv{}{c_1} + \vu{e}_2 \frac{1}{h_2} \pdv{}{c_2} + \vu{e}_3 \frac{1}{h_3} \pdv{}{c_3} \bigg)
- \\
- &\quad\:\:\: \cdot \Big( T_{11} \vu{e}_1 \vu{e}_1 + T_{12} \vu{e}_1 \vu{e}_2 + T_{13} \vu{e}_1 \vu{e}_3
- \\
- &\qquad + T_{21} \vu{e}_2 \vu{e}_1 + T_{22} \vu{e}_2 \vu{e}_2 + T_{23} \vu{e}_2 \vu{e}_3
- \\
- &\qquad + T_{31} \vu{e}_3 \vu{e}_1 + T_{32} \vu{e}_3 \vu{e}_2 + T_{33} \vu{e}_3 \vu{e}_3 \Big)
- \\
- &= \bigg( \sum_{j} \vu{e}_j \frac{1}{h_j} \pdv{}{c_j} \bigg) \cdot \bigg( \sum_{kl} T_{kl} \vu{e}_k \vu{e}_l \bigg)
- \\
- &= \sum_{jkl} \vu{e}_j \cdot \frac{1}{h_j} \pdv{}{c_j} (T_{kl} \vu{e}_k \vu{e}_l)
-\end{aligned}$$
-
-We apply the product rule of differentiation
-and use that $$\vb{c} \cdot (\vb{a} \vb{b}) = (\vb{c} \cdot \vb{a}) \vb{b}$$:
-
-$$\begin{aligned}
- \nabla \cdot \overline{\overline{\mathbf{T}}}
- &= \sum_{jkl} \bigg( (\vu{e}_j \cdot \vu{e}_k) \frac{1}{h_j} \pdv{T_{kl}}{c_j} \vu{e}_l
- + (\vu{e}_j \cdot \vu{e}_k) \frac{T_{kl}}{h_j} \pdv{\vu{e}_l}{c_j}
- + \Big( \vu{e}_j \cdot \pdv{\vu{e}_k}{c_j} \Big) \frac{T_{kl}}{h_j} \vu{e}_l \bigg)
- \\
- &= \sum_{jkl} \bigg( \delta_{jk} \frac{1}{h_j} \pdv{T_{kl}}{c_j} \vu{e}_l + \delta_{jk} \frac{T_{kl}}{h_j} \pdv{\vu{e}_l}{c_j}
- + \Big( \vu{e}_j \cdot \pdv{\vu{e}_k}{c_j} \Big) \frac{T_{kl}}{h_j} \vu{e}_l \bigg)
- \\
- &= \sum_{jl} \bigg( \frac{1}{h_j} \pdv{T_{jl}}{c_j} \vu{e}_l + \frac{T_{jl}}{h_j} \pdv{\vu{e}_l}{c_j}
- + \sum_{k} \Big( \vu{e}_j \cdot \pdv{\vu{e}_k}{c_j} \Big) \frac{T_{kl}}{h_j} \vu{e}_l \bigg)
-\end{aligned}$$
-
-Inserting our expressions for the derivatives of the basis vectors
-in the last term, we find:
-
-$$\begin{aligned}
- \nabla \cdot \overline{\overline{\mathbf{T}}}
- &= \sum_{jl} \bigg( \frac{1}{h_j} \pdv{T_{jl}}{c_j} \vu{e}_l + \frac{T_{jl}}{h_j} \pdv{\vu{e}_l}{c_j}
- + \sum_{k} \vu{e}_j \cdot
- \Big( \frac{1}{h_k} \pdv{h_j}{c_k} \vu{e}_j - \delta_{jk} \sum_{m} \frac{1}{h_m} \pdv{h_k}{c_m} \vu{e}_m \Big) \frac{T_{kl}}{h_j} \vu{e}_l \bigg)
- \\
- &= \sum_{jl} \bigg( \frac{1}{h_j} \pdv{T_{jl}}{c_j} \vu{e}_l + \frac{T_{jl}}{h_j} \pdv{\vu{e}_l}{c_j}
- + \sum_{k} \frac{T_{kl}}{h_j h_k} \pdv{h_j}{c_k} \vu{e}_l
- - \sum_{m} (\vu{e}_j \cdot \vu{e}_m) \frac{T_{jl}}{h_j h_m} \pdv{h_j}{c_m} \vu{e}_l \bigg)
- \\
- &= \sum_{jl} \bigg( \frac{1}{h_j} \pdv{T_{jl}}{c_j} \vu{e}_l + \frac{T_{jl}}{h_j} \pdv{\vu{e}_l}{c_j}
- + \sum_{k} \frac{T_{kl}}{h_j h_k} \pdv{h_j}{c_k} \vu{e}_l - \frac{T_{jl}}{h_j h_j} \pdv{h_j}{c_j} \vu{e}_l \bigg)
- \\
- &= \sum_{jl} \bigg( \frac{1}{h_j} \pdv{T_{jl}}{c_j} \vu{e}_l + \frac{T_{jl}}{h_j} \pdv{\vu{e}_l}{c_j}
- + \sum_{k \neq j} \frac{T_{kl}}{h_j h_k} \pdv{h_j}{c_k} \vu{e}_l \bigg)
-\end{aligned}$$
-
-Where we noticed that the latter two terms cancel out if $$k = j$$.
-Next, rewriting $$\ipdv{\vu{e}_l}{c_j}$$:
-
-$$\begin{aligned}
- \nabla \cdot \overline{\overline{\mathbf{T}}}
- &= \sum_{jl} \bigg( \frac{1}{h_j} \pdv{T_{jl}}{c_j} \vu{e}_l
- + \frac{T_{jl}}{h_j} \Big( \frac{1}{h_l} \pdv{h_j}{c_l} \vu{e}_j - \delta_{jl} \sum_{m} \frac{1}{h_m} \pdv{h_l}{c_m} \vu{e}_m \Big)
- + \sum_{k \neq j} \frac{T_{kl}}{h_j h_k} \pdv{h_j}{c_k} \vu{e}_l \bigg)
- \\
- &= \sum_{jl} \bigg( \frac{1}{h_j} \pdv{T_{jl}}{c_j} \vu{e}_l
- + \frac{T_{jl}}{h_j h_l} \pdv{h_j}{c_l} \vu{e}_j - \delta_{jl} \sum_{m} \frac{T_{jl}}{h_j h_m} \pdv{h_l}{c_m} \vu{e}_m
- + \sum_{k \neq j} \frac{T_{kl}}{h_j h_k} \pdv{h_j}{c_k} \vu{e}_l \bigg)
- \\
- &= \sum_{jl} \frac{1}{h_j} \pdv{T_{jl}}{c_j} \vu{e}_l
- + \sum_{jl} \frac{T_{jl}}{h_j h_l} \pdv{h_j}{c_l} \vu{e}_j
- - \sum_{jm} \frac{T_{jj}}{h_j h_m} \pdv{h_j}{c_m} \vu{e}_m
- + \sum_{jl} \sum_{k \neq j} \frac{T_{kl}}{h_j h_k} \pdv{h_j}{c_k} \vu{e}_l
-\end{aligned}$$
-
-Renaming the indices such that each term contains $$\vu{e}_l$$,
-we arrive at the full result:
-
-$$\begin{aligned}
- \nabla \cdot \overline{\overline{\mathbf{T}}}
- &= \sum_{jl} \bigg( \frac{1}{h_j} \pdv{T_{jl}}{c_j}
- + \frac{T_{lj}}{h_j h_l} \pdv{h_l}{c_j}
- - \frac{T_{jj}}{h_j h_l} \pdv{h_j}{c_l}
- + \sum_{k \neq j} \frac{T_{kl}}{h_j h_k} \pdv{h_j}{c_k} \bigg) \vu{e}_l
-\end{aligned}$$
-
-To isolate the $$c_m$$-component, we dot-multiply by $$\vu{e}_m$$
-and resolve the Kronecker delta $$\delta_{lm}$$:
-
-$$\begin{aligned}
- (\nabla \cdot \overline{\overline{\mathbf{T}}})_m
- &= (\nabla \cdot \overline{\overline{\mathbf{T}}}) \cdot \vu{e}_m
- \\
- &= \sum_{jl} \delta_{lm} \bigg( \frac{1}{h_j} \pdv{T_{jl}}{c_j}
- + \frac{T_{lj}}{h_j h_l} \pdv{h_l}{c_j}
- - \frac{T_{jj}}{h_j h_l} \pdv{h_j}{c_l}
- + \sum_{k \neq j} \frac{T_{kl}}{h_j h_k} \pdv{h_j}{c_k} \bigg)
- \\
- &= \sum_{j} \frac{1}{h_j} \pdv{T_{jm}}{c_j}
- + \sum_{j} \frac{T_{mj}}{h_j h_m} \pdv{h_m}{c_j}
- - \sum_{j} \frac{T_{jj}}{h_j h_m} \pdv{h_j}{c_m}
- + \sum_{j} \sum_{k \neq j} \frac{T_{km}}{h_j h_k} \pdv{h_j}{c_k}
-\end{aligned}$$
-
-The second and third terms cancel out for $$j = m$$,
-so we can sum over $$j \neq m$$ instead.
-{% include proof/end.html id="proof-div-tensor" %}
-
-
-
## Laplacian of a vector
The Laplacian $$\nabla^2 \vb{V}$$ of a vector $$\vb{V}$$
@@ -1168,6 +1043,131 @@ Which gives the desired formula after some simple index renaming and rearranging
+## Divergence of a tensor
+
+It also possible to take the divergence of a 2nd-order tensor $$\overline{\overline{\mathbf{T}}}$$,
+yielding a vector with these components in $$(c_1, c_2, c_3)$$:
+
+$$\begin{aligned}
+ \boxed{
+ (\nabla \cdot \overline{\overline{\mathbf{T}}})_j
+ = \sum_{k} \frac{1}{h_k} \pdv{T_{kj}}{c_k}
+ + \sum_{k \neq j} \frac{T_{jk}}{h_j h_k} \pdv{h_j}{c_k}
+ - \sum_{k \neq j} \frac{T_{kk}}{h_j h_k} \pdv{h_k}{c_j}
+ + \sum_{k} \sum_{l \neq k} \frac{T_{lj}}{h_k h_l} \pdv{h_k}{c_l}
+ }
+\end{aligned}$$
+
+{% include proof/start.html id="proof-div-tensor" -%}
+From our earlier calculation of $$\nabla f$$,
+we know how to express the del $$\nabla$$ in $$(c_1, c_2, c_3)$$.
+Now we simply take the dot product and evaluate:
+
+$$\begin{aligned}
+ \nabla \cdot \overline{\overline{\mathbf{T}}}
+ &= \bigg( \vu{e}_1 \frac{1}{h_1} \pdv{}{c_1} + \vu{e}_2 \frac{1}{h_2} \pdv{}{c_2} + \vu{e}_3 \frac{1}{h_3} \pdv{}{c_3} \bigg)
+ \\
+ &\quad\:\:\: \cdot \Big( T_{11} \vu{e}_1 \vu{e}_1 + T_{12} \vu{e}_1 \vu{e}_2 + T_{13} \vu{e}_1 \vu{e}_3
+ \\
+ &\qquad + T_{21} \vu{e}_2 \vu{e}_1 + T_{22} \vu{e}_2 \vu{e}_2 + T_{23} \vu{e}_2 \vu{e}_3
+ \\
+ &\qquad + T_{31} \vu{e}_3 \vu{e}_1 + T_{32} \vu{e}_3 \vu{e}_2 + T_{33} \vu{e}_3 \vu{e}_3 \Big)
+ \\
+ &= \bigg( \sum_{j} \vu{e}_j \frac{1}{h_j} \pdv{}{c_j} \bigg) \cdot \bigg( \sum_{kl} T_{kl} \vu{e}_k \vu{e}_l \bigg)
+ \\
+ &= \sum_{jkl} \vu{e}_j \cdot \frac{1}{h_j} \pdv{}{c_j} (T_{kl} \vu{e}_k \vu{e}_l)
+\end{aligned}$$
+
+We apply the product rule of differentiation
+and use that $$\vb{c} \cdot (\vb{a} \vb{b}) = (\vb{c} \cdot \vb{a}) \vb{b}$$:
+
+$$\begin{aligned}
+ \nabla \cdot \overline{\overline{\mathbf{T}}}
+ &= \sum_{jkl} \bigg( (\vu{e}_j \cdot \vu{e}_k) \frac{1}{h_j} \pdv{T_{kl}}{c_j} \vu{e}_l
+ + (\vu{e}_j \cdot \vu{e}_k) \frac{T_{kl}}{h_j} \pdv{\vu{e}_l}{c_j}
+ + \Big( \vu{e}_j \cdot \pdv{\vu{e}_k}{c_j} \Big) \frac{T_{kl}}{h_j} \vu{e}_l \bigg)
+ \\
+ &= \sum_{jkl} \bigg( \delta_{jk} \frac{1}{h_j} \pdv{T_{kl}}{c_j} \vu{e}_l + \delta_{jk} \frac{T_{kl}}{h_j} \pdv{\vu{e}_l}{c_j}
+ + \Big( \vu{e}_j \cdot \pdv{\vu{e}_k}{c_j} \Big) \frac{T_{kl}}{h_j} \vu{e}_l \bigg)
+ \\
+ &= \sum_{jl} \bigg( \frac{1}{h_j} \pdv{T_{jl}}{c_j} \vu{e}_l + \frac{T_{jl}}{h_j} \pdv{\vu{e}_l}{c_j}
+ + \sum_{k} \Big( \vu{e}_j \cdot \pdv{\vu{e}_k}{c_j} \Big) \frac{T_{kl}}{h_j} \vu{e}_l \bigg)
+\end{aligned}$$
+
+Inserting our expressions for the derivatives of the basis vectors
+in the last term, we find:
+
+$$\begin{aligned}
+ \nabla \cdot \overline{\overline{\mathbf{T}}}
+ &= \sum_{jl} \bigg( \frac{1}{h_j} \pdv{T_{jl}}{c_j} \vu{e}_l + \frac{T_{jl}}{h_j} \pdv{\vu{e}_l}{c_j}
+ + \sum_{k} \vu{e}_j \cdot
+ \Big( \frac{1}{h_k} \pdv{h_j}{c_k} \vu{e}_j - \delta_{jk} \sum_{m} \frac{1}{h_m} \pdv{h_k}{c_m} \vu{e}_m \Big) \frac{T_{kl}}{h_j} \vu{e}_l \bigg)
+ \\
+ &= \sum_{jl} \bigg( \frac{1}{h_j} \pdv{T_{jl}}{c_j} \vu{e}_l + \frac{T_{jl}}{h_j} \pdv{\vu{e}_l}{c_j}
+ + \sum_{k} \frac{T_{kl}}{h_j h_k} \pdv{h_j}{c_k} \vu{e}_l
+ - \sum_{m} (\vu{e}_j \cdot \vu{e}_m) \frac{T_{jl}}{h_j h_m} \pdv{h_j}{c_m} \vu{e}_l \bigg)
+ \\
+ &= \sum_{jl} \bigg( \frac{1}{h_j} \pdv{T_{jl}}{c_j} \vu{e}_l + \frac{T_{jl}}{h_j} \pdv{\vu{e}_l}{c_j}
+ + \sum_{k} \frac{T_{kl}}{h_j h_k} \pdv{h_j}{c_k} \vu{e}_l - \frac{T_{jl}}{h_j h_j} \pdv{h_j}{c_j} \vu{e}_l \bigg)
+ \\
+ &= \sum_{jl} \bigg( \frac{1}{h_j} \pdv{T_{jl}}{c_j} \vu{e}_l + \frac{T_{jl}}{h_j} \pdv{\vu{e}_l}{c_j}
+ + \sum_{k \neq j} \frac{T_{kl}}{h_j h_k} \pdv{h_j}{c_k} \vu{e}_l \bigg)
+\end{aligned}$$
+
+Where we noticed that the latter two terms cancel out if $$k = j$$.
+Next, rewriting $$\ipdv{\vu{e}_l}{c_j}$$:
+
+$$\begin{aligned}
+ \nabla \cdot \overline{\overline{\mathbf{T}}}
+ &= \sum_{jl} \bigg( \frac{1}{h_j} \pdv{T_{jl}}{c_j} \vu{e}_l
+ + \frac{T_{jl}}{h_j} \Big( \frac{1}{h_l} \pdv{h_j}{c_l} \vu{e}_j - \delta_{jl} \sum_{m} \frac{1}{h_m} \pdv{h_l}{c_m} \vu{e}_m \Big)
+ + \sum_{k \neq j} \frac{T_{kl}}{h_j h_k} \pdv{h_j}{c_k} \vu{e}_l \bigg)
+ \\
+ &= \sum_{jl} \bigg( \frac{1}{h_j} \pdv{T_{jl}}{c_j} \vu{e}_l
+ + \frac{T_{jl}}{h_j h_l} \pdv{h_j}{c_l} \vu{e}_j - \delta_{jl} \sum_{m} \frac{T_{jl}}{h_j h_m} \pdv{h_l}{c_m} \vu{e}_m
+ + \sum_{k \neq j} \frac{T_{kl}}{h_j h_k} \pdv{h_j}{c_k} \vu{e}_l \bigg)
+ \\
+ &= \sum_{jl} \frac{1}{h_j} \pdv{T_{jl}}{c_j} \vu{e}_l
+ + \sum_{jl} \frac{T_{jl}}{h_j h_l} \pdv{h_j}{c_l} \vu{e}_j
+ - \sum_{jm} \frac{T_{jj}}{h_j h_m} \pdv{h_j}{c_m} \vu{e}_m
+ + \sum_{jl} \sum_{k \neq j} \frac{T_{kl}}{h_j h_k} \pdv{h_j}{c_k} \vu{e}_l
+\end{aligned}$$
+
+Renaming the indices such that each term contains $$\vu{e}_l$$,
+we arrive at the full result:
+
+$$\begin{aligned}
+ \nabla \cdot \overline{\overline{\mathbf{T}}}
+ &= \sum_{jl} \bigg( \frac{1}{h_j} \pdv{T_{jl}}{c_j}
+ + \frac{T_{lj}}{h_j h_l} \pdv{h_l}{c_j}
+ - \frac{T_{jj}}{h_j h_l} \pdv{h_j}{c_l}
+ + \sum_{k \neq j} \frac{T_{kl}}{h_j h_k} \pdv{h_j}{c_k} \bigg) \vu{e}_l
+\end{aligned}$$
+
+To isolate the $$c_m$$-component, we dot-multiply by $$\vu{e}_m$$
+and resolve the Kronecker delta $$\delta_{lm}$$:
+
+$$\begin{aligned}
+ (\nabla \cdot \overline{\overline{\mathbf{T}}})_m
+ &= (\nabla \cdot \overline{\overline{\mathbf{T}}}) \cdot \vu{e}_m
+ \\
+ &= \sum_{jl} \delta_{lm} \bigg( \frac{1}{h_j} \pdv{T_{jl}}{c_j}
+ + \frac{T_{lj}}{h_j h_l} \pdv{h_l}{c_j}
+ - \frac{T_{jj}}{h_j h_l} \pdv{h_j}{c_l}
+ + \sum_{k \neq j} \frac{T_{kl}}{h_j h_k} \pdv{h_j}{c_k} \bigg)
+ \\
+ &= \sum_{j} \frac{1}{h_j} \pdv{T_{jm}}{c_j}
+ + \sum_{j} \frac{T_{mj}}{h_j h_m} \pdv{h_m}{c_j}
+ - \sum_{j} \frac{T_{jj}}{h_j h_m} \pdv{h_j}{c_m}
+ + \sum_{j} \sum_{k \neq j} \frac{T_{km}}{h_j h_k} \pdv{h_j}{c_k}
+\end{aligned}$$
+
+The second and third terms cancel out for $$j = m$$,
+so we can sum over $$j \neq m$$ instead.
+{% include proof/end.html id="proof-div-tensor" %}
+
+
+
## References
1. M.L. Boas,
*Mathematical methods in the physical sciences*, 2nd edition,