summaryrefslogtreecommitdiff
path: root/source/know/concept/parsevals-theorem
diff options
context:
space:
mode:
Diffstat (limited to 'source/know/concept/parsevals-theorem')
-rw-r--r--source/know/concept/parsevals-theorem/index.md20
1 files changed, 11 insertions, 9 deletions
diff --git a/source/know/concept/parsevals-theorem/index.md b/source/know/concept/parsevals-theorem/index.md
index 377f3a1..41e8fed 100644
--- a/source/know/concept/parsevals-theorem/index.md
+++ b/source/know/concept/parsevals-theorem/index.md
@@ -26,20 +26,21 @@ $$\begin{aligned}
{% include proof/start.html id="proof-fourier" -%}
-We insert the inverse FT into the defintion of the inner product:
+We insert the inverse FT into the definition of the inner product:
$$\begin{aligned}
\Inprod{f}{g}
&= \int_{-\infty}^\infty \big( \hat{\mathcal{F}}^{-1}\{\tilde{f}(k)\}\big)^* \: \hat{\mathcal{F}}^{-1}\{\tilde{g}(k)\} \dd{x}
\\
&= B^2 \int
- \Big( \int \tilde{f}^*(k_1) \exp(i s k_1 x) \dd{k_1} \Big)
- \Big( \int \tilde{g}(k) \exp(- i s k x) \dd{k} \Big)
+ \Big( \int \tilde{f}^*(k') \: e^{i s k' x} \dd{k'} \Big)
+ \Big( \int \tilde{g}(k) \: e^{- i s k x} \dd{k} \Big)
\dd{x}
\\
- &= 2 \pi B^2 \iint \tilde{f}^*(k_1) \tilde{g}(k) \Big( \frac{1}{2 \pi} \int_{-\infty}^\infty \exp(i s x (k_1 - k)) \dd{x} \Big) \dd{k_1} \dd{k}
+ &= 2 \pi B^2 \iint \tilde{f}^*(k') \: \tilde{g}(k) \Big( \frac{1}{2 \pi}
+ \int_{-\infty}^\infty e^{i s x (k' - k)} \dd{x} \Big) \dd{k'} \dd{k}
\\
- &= 2 \pi B^2 \iint \tilde{f}^*(k_1) \: \tilde{g}(k) \: \delta(s (k_1 - k)) \dd{k_1} \dd{k}
+ &= 2 \pi B^2 \iint \tilde{f}^*(k') \: \tilde{g}(k) \: \delta\big(s (k' \!-\! k)\big) \dd{k'} \dd{k}
\\
&= \frac{2 \pi B^2}{|s|} \int_{-\infty}^\infty \tilde{f}^*(k) \: \tilde{g}(k) \dd{k}
= \frac{2 \pi B^2}{|s|} \inprod{\tilde{f}}{\tilde{g}}
@@ -54,13 +55,14 @@ $$\begin{aligned}
&= \int_{-\infty}^\infty \big( \hat{\mathcal{F}}\{f(x)\}\big)^* \: \hat{\mathcal{F}}\{g(x)\} \dd{k}
\\
&= A^2 \int
- \Big( \int f^*(x_1) \exp(- i s k x_1) \dd{x_1} \Big)
- \Big( \int g(x) \exp(i s k x) \dd{x} \Big)
+ \Big( \int f^*(x') \: e^{- i s k x'} \dd{x'} \Big)
+ \Big( \int g(x) \: e^{i s k x} \dd{x} \Big)
\dd{k}
\\
- &= 2 \pi A^2 \iint f^*(x_1) g(x) \Big( \frac{1}{2 \pi} \int_{-\infty}^\infty \exp(i s k (x_1 - x)) \dd{k} \Big) \dd{x_1} \dd{x}
+ &= 2 \pi A^2 \iint f^*(x') \: g(x) \Big( \frac{1}{2 \pi}
+ \int_{-\infty}^\infty e^{i s k (x - x')} \dd{k} \Big) \dd{x'} \dd{x}
\\
- &= 2 \pi A^2 \iint f^*(x_1) \: g(x) \: \delta(s (x_1 - x)) \dd{x_1} \dd{x}
+ &= 2 \pi A^2 \iint f^*(x') \: g(x) \: \delta\big(s (x \!-\! x')\big) \dd{x'} \dd{x}
\\
&= \frac{2 \pi A^2}{|s|} \int_{-\infty}^\infty f^*(x) \: g(x) \dd{x}
= \frac{2 \pi A^2}{|s|} \Inprod{f}{g}