summaryrefslogtreecommitdiff
path: root/source/know/concept
diff options
context:
space:
mode:
Diffstat (limited to 'source/know/concept')
-rw-r--r--source/know/concept/boltzmann-equation/index.md8
1 files changed, 4 insertions, 4 deletions
diff --git a/source/know/concept/boltzmann-equation/index.md b/source/know/concept/boltzmann-equation/index.md
index d2631b2..9cb3bcd 100644
--- a/source/know/concept/boltzmann-equation/index.md
+++ b/source/know/concept/boltzmann-equation/index.md
@@ -12,7 +12,7 @@ layout: "concept"
Consider a collection of particles,
each with its own position $$\vb{r}$$ and velocity $$\vb{v}$$.
We can thus define a probability density function $$f(\vb{r}, \vb{v}, t)$$
-describing the expected number of particles at $$(\vb{r}, \vb{v})$$ at time $$t$$.
+describing the expected particle count at $$(\vb{r}, \vb{v})$$ at time $$t$$.
Let the total number of particles $$N$$ be conserved, then clearly:
$$\begin{aligned}
@@ -205,9 +205,9 @@ $$\begin{aligned}
= \rho \Expval{(\vb{v} \!-\! \vb{V}) (\vb{v} \!-\! \vb{V})}
\end{aligned}$$
-This leads to the expected result,
-where $$\nabla \cdot (\rho \vb{V}\vb{V})$$ represents the fluid momentum,
-and $$\nabla \cdot \hat{P}$$ the viscous/pressure momentum:
+This leads to the desired result,
+where $$\nabla \cdot (\rho \vb{V}\vb{V})$$ is the fluid momentum,
+and $$\nabla \cdot \hat{P}$$ is the viscous/pressure momentum:
$$\begin{aligned}
0