summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--content/know/category/quantum-mechanics.md3
-rw-r--r--content/know/concept/index.md3
-rw-r--r--latex/know/concept/probability-current/source.md85
-rw-r--r--static/know/concept/probability-current/index.html108
4 files changed, 199 insertions, 0 deletions
diff --git a/content/know/category/quantum-mechanics.md b/content/know/category/quantum-mechanics.md
index dcb6eb6..d302dfe 100644
--- a/content/know/category/quantum-mechanics.md
+++ b/content/know/category/quantum-mechanics.md
@@ -11,3 +11,6 @@ Alphabetical list of concepts in this category.
## D
* [Dirac notation](/know/concept/dirac-notation/)
+
+## P
+* [Probability current](/know/concept/probability-current/)
diff --git a/content/know/concept/index.md b/content/know/concept/index.md
index 6604aba..19f2027 100644
--- a/content/know/concept/index.md
+++ b/content/know/concept/index.md
@@ -11,3 +11,6 @@ Alphabetical list of concepts in this knowledge base.
## D
* [Dirac notation](/know/concept/dirac-notation/)
+
+## P
+* [Probability current](/know/concept/probability-current/)
diff --git a/latex/know/concept/probability-current/source.md b/latex/know/concept/probability-current/source.md
new file mode 100644
index 0000000..a6780f7
--- /dev/null
+++ b/latex/know/concept/probability-current/source.md
@@ -0,0 +1,85 @@
+# Probability current
+
+In quantum mechanics, the *probability current* expresses the movement
+of the probability of finding a particle. Or in other words, it treats
+the particle as a heterogeneous fluid with density $|\psi|^2$. Now, the
+probability of finding the particle within a volume $V$ is given by:
+
+$$\begin{aligned}
+ P = \int_{V} | \psi |^2 \dd[3]{\vec{r}}
+\end{aligned}$$
+
+As the system evolves in time, this probability may change, so we take
+its derivative with respect to time $t$, and when necessary substitute
+in the other side of the Schrödinger equation to get:
+
+$$\begin{aligned}
+ \pd{P}{t}
+ &= \int_{V} \psi \pd{\psi^*}{t} + \psi^* \pd{\psi}{t} \dd[3]{\vec{r}}
+ = \frac{i}{\hbar} \int_{V} \psi (\hat{H} \psi^*) - \psi^* (\hat{H} \psi) \dd[3]{\vec{r}}
+ \\
+ &= \frac{i}{\hbar} \int_{V} \psi \Big( \!-\! \frac{\hbar^2}{2 m} \nabla^2 \psi^* + V(\vec{r}) \psi^* \Big)
+ - \psi^* \Big( \!-\! \frac{\hbar^2}{2 m} \nabla^2 \psi + V(\vec{r}) \psi \Big) \dd[3]{\vec{r}}
+ \\
+ &= \frac{i \hbar}{2 m} \int_{V} - \psi \nabla^2 \psi^* + \psi^* \nabla^2 \psi \dd[3]{\vec{r}}
+ = - \int_{V} \nabla \cdot \vec{J} \dd[3]{\vec{r}}
+\end{aligned}$$
+
+Where we have defined the probability current $\vec{J}$ as follows in
+the $\vec{r}$-basis:
+
+$$\begin{aligned}
+ \vec{J}
+ = \frac{i \hbar}{2 m} (\psi \nabla \psi^* - \psi^* \nabla \psi)
+ = \mathrm{Re} \Big\{ \psi \frac{i \hbar}{m} \psi^* \Big\}
+\end{aligned}$$
+
+Let us rewrite this using the momentum operator
+$\hat{p} = -i \hbar \nabla$ as follows, noting that $\hat{p} / m$ is
+simply the velocity operator $\hat{v}$:
+
+$$\begin{aligned}
+ \boxed{
+ \vec{J}
+ = \frac{1}{2 m} ( \psi^* \hat{p} \psi - \psi \hat{p} \psi^*)
+ = \mathrm{Re} \Big\{ \psi^* \frac{\hat{p}}{m} \psi \Big\}
+ = \mathrm{Re} \{ \psi^* \hat{v} \psi \}
+ }
+\end{aligned}$$
+
+Returning to the derivation of $\vec{J}$, we now have the following
+equation:
+
+$$\begin{aligned}
+ \pd{P}{t}
+ = \int_{V} \pd{|\psi|^2}{t} \dd[3]{\vec{r}}
+ = - \int_{V} \nabla \cdot \vec{J} \dd[3]{\vec{r}}
+\end{aligned}$$
+
+By removing the integrals, we thus arrive at the *continuity equation*
+for $\vec{J}$:
+
+$$\begin{aligned}
+ \boxed{
+ \nabla \cdot \vec{J}
+ = - \pd{|\psi|^2}{t}
+ }
+\end{aligned}$$
+
+This states that probability is conserved, and is reminiscent of charge
+conservation in electromagnetism. In other words, the probability at a
+point can only change by letting it "flow" towards or away from it. Thus
+$\vec{J}$ represents the flow of probability, which is analogous to the
+motion of a particle.
+
+As a bonus, this still holds for a particle in an electromagnetic vector
+potential $\vec{A}$, thanks to the gauge invariance of the Schrödinger
+equation. We can thus extend the definition to a particle with charge
+$q$ in an SI-unit field, neglecting spin:
+
+$$\begin{aligned}
+ \boxed{
+ \vec{J}
+ = \mathrm{Re} \Big\{ \psi^* \frac{\hat{p} - q \vec{A}}{m} \psi \Big\}
+ }
+\end{aligned}$$
diff --git a/static/know/concept/probability-current/index.html b/static/know/concept/probability-current/index.html
new file mode 100644
index 0000000..d736e49
--- /dev/null
+++ b/static/know/concept/probability-current/index.html
@@ -0,0 +1,108 @@
+<!DOCTYPE html>
+<html xmlns="http://www.w3.org/1999/xhtml" lang="" xml:lang="">
+<head>
+ <meta charset="utf-8" />
+ <meta name="generator" content="pandoc" />
+ <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes" />
+ <title>Prefetch | source</title>
+ <link rel="icon" href="data:,">
+ <style>
+ body {
+ background:#ddd;
+ color:#222;
+ max-width:80ch;
+ text-align:justify;
+ margin:auto;
+ padding:1em 0;
+ font-family:sans-serif;
+ line-height:1.3;
+ }
+ a {text-decoration:none;color:#00f;}
+ h1,h2,h3 {text-align:center}
+ h1 {font-size:200%;}
+ h2 {font-size:160%;}
+ h3 {font-size:120%;}
+ .nav {height:3rem;font-size:250%;}
+ .nav a:link,a:visited {color:#222;}
+ .nav a:hover,a:focus,a:active {color:#00f;}
+ .navl {width:30%;float:left;text-align:left;}
+ .navr {width:70%;float:left;text-align:right;}
+ pre {filter:invert(100%);}
+ @media (prefers-color-scheme: dark) {
+ body {background:#222;filter:invert(100%);}
+ } </style>
+ <script>
+ MathJax = {
+ loader: {load: ["[tex]/physics"]},
+ tex: {packages: {"[+]": ["physics"]}}
+ };
+ </script>
+ <script src="/mathjax/tex-svg.js" type="text/javascript"></script>
+ </head>
+<body>
+<div class="nav">
+<div class="navl"><a href="/">PREFETCH</a></div>
+<div class="navr">
+<a href="/blog/">blog</a>&emsp;
+<a href="/code/">code</a>&emsp;
+<a href="/know/">know</a>
+</div>
+</div>
+<hr>
+<h1 id="probability-current">Probability current</h1>
+<p>In quantum mechanics, the <em>probability current</em> expresses the movement of the probability of finding a particle. Or in other words, it treats the particle as a heterogeneous fluid with density <span class="math inline">\(|\psi|^2\)</span>. Now, the probability of finding the particle within a volume <span class="math inline">\(V\)</span> is given by:</p>
+<p><span class="math display">\[\begin{aligned}
+ P = \int_{V} | \psi |^2 \dd[3]{\vec{r}}
+\end{aligned}\]</span></p>
+<p>As the system evolves in time, this probability may change, so we take its derivative with respect to time <span class="math inline">\(t\)</span>, and when necessary substitute in the other side of the Schrödinger equation to get:</p>
+<p><span class="math display">\[\begin{aligned}
+ \pd{P}{t}
+ &amp;= \int_{V} \psi \pd{\psi^*}{t} + \psi^* \pd{\psi}{t} \dd[3]{\vec{r}}
+ = \frac{i}{\hbar} \int_{V} \psi (\hat{H} \psi^*) - \psi^* (\hat{H} \psi) \dd[3]{\vec{r}}
+ \\
+ &amp;= \frac{i}{\hbar} \int_{V} \psi \Big( \!-\! \frac{\hbar^2}{2 m} \nabla^2 \psi^* + V(\vec{r}) \psi^* \Big)
+ - \psi^* \Big( \!-\! \frac{\hbar^2}{2 m} \nabla^2 \psi + V(\vec{r}) \psi \Big) \dd[3]{\vec{r}}
+ \\
+ &amp;= \frac{i \hbar}{2 m} \int_{V} - \psi \nabla^2 \psi^* + \psi^* \nabla^2 \psi \dd[3]{\vec{r}}
+ = - \int_{V} \nabla \cdot \vec{J} \dd[3]{\vec{r}}
+\end{aligned}\]</span></p>
+<p>Where we have defined the probability current <span class="math inline">\(\vec{J}\)</span> as follows in the <span class="math inline">\(\vec{r}\)</span>-basis:</p>
+<p><span class="math display">\[\begin{aligned}
+ \vec{J}
+ = \frac{i \hbar}{2 m} (\psi \nabla \psi^* - \psi^* \nabla \psi)
+ = \mathrm{Re} \Big\{ \psi \frac{i \hbar}{m} \psi^* \Big\}
+\end{aligned}\]</span></p>
+<p>Let us rewrite this using the momentum operator <span class="math inline">\(\hat{p} = -i \hbar \nabla\)</span> as follows, noting that <span class="math inline">\(\hat{p} / m\)</span> is simply the velocity operator <span class="math inline">\(\hat{v}\)</span>:</p>
+<p><span class="math display">\[\begin{aligned}
+ \boxed{
+ \vec{J}
+ = \frac{1}{2 m} ( \psi^* \hat{p} \psi - \psi \hat{p} \psi^*)
+ = \mathrm{Re} \Big\{ \psi^* \frac{\hat{p}}{m} \psi \Big\}
+ = \mathrm{Re} \{ \psi^* \hat{v} \psi \}
+ }
+\end{aligned}\]</span></p>
+<p>Returning to the derivation of <span class="math inline">\(\vec{J}\)</span>, we now have the following equation:</p>
+<p><span class="math display">\[\begin{aligned}
+ \pd{P}{t}
+ = \int_{V} \pd{|\psi|^2}{t} \dd[3]{\vec{r}}
+ = - \int_{V} \nabla \cdot \vec{J} \dd[3]{\vec{r}}
+\end{aligned}\]</span></p>
+<p>By removing the integrals, we thus arrive at the <em>continuity equation</em> for <span class="math inline">\(\vec{J}\)</span>:</p>
+<p><span class="math display">\[\begin{aligned}
+ \boxed{
+ \nabla \cdot \vec{J}
+ = - \pd{|\psi|^2}{t}
+ }
+\end{aligned}\]</span></p>
+<p>This states that probability is conserved, and is reminiscent of charge conservation in electromagnetism. In other words, the probability at a point can only change by letting it “flow” towards or away from it. Thus <span class="math inline">\(\vec{J}\)</span> represents the flow of probability, which is analogous to the motion of a particle.</p>
+<p>As a bonus, this still holds for a particle in an electromagnetic vector potential <span class="math inline">\(\vec{A}\)</span>, thanks to the gauge invariance of the Schrödinger equation. We can thus extend the definition to a particle with charge <span class="math inline">\(q\)</span> in an SI-unit field, neglecting spin:</p>
+<p><span class="math display">\[\begin{aligned}
+ \boxed{
+ \vec{J}
+ = \mathrm{Re} \Big\{ \psi^* \frac{\hat{p} - q \vec{A}}{m} \psi \Big\}
+ }
+\end{aligned}\]</span></p>
+<hr>
+&copy; &quot;Prefetch&quot;. Licensed under <a href="https://creativecommons.org/licenses/by-sa/4.0/">CC BY-SA 4.0</a>.
+</body>
+</html>