summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--content/know/category/quantum-mechanics.md3
-rw-r--r--content/know/concept/index.md3
-rw-r--r--latex/know/concept/time-independent-perturbation-theory/source.md319
-rw-r--r--static/know/concept/time-independent-perturbation-theory/index.html230
4 files changed, 555 insertions, 0 deletions
diff --git a/content/know/category/quantum-mechanics.md b/content/know/category/quantum-mechanics.md
index d302dfe..944e491 100644
--- a/content/know/category/quantum-mechanics.md
+++ b/content/know/category/quantum-mechanics.md
@@ -14,3 +14,6 @@ Alphabetical list of concepts in this category.
## P
* [Probability current](/know/concept/probability-current/)
+
+## T
+* [Time-independent perturbation theory](/know/concept/time-independent-perturbation-theory/)
diff --git a/content/know/concept/index.md b/content/know/concept/index.md
index 19f2027..db1c81c 100644
--- a/content/know/concept/index.md
+++ b/content/know/concept/index.md
@@ -14,3 +14,6 @@ Alphabetical list of concepts in this knowledge base.
## P
* [Probability current](/know/concept/probability-current/)
+
+## T
+* [Time-independent perturbation theory](/know/concept/time-independent-perturbation-theory/)
diff --git a/latex/know/concept/time-independent-perturbation-theory/source.md b/latex/know/concept/time-independent-perturbation-theory/source.md
new file mode 100644
index 0000000..d076457
--- /dev/null
+++ b/latex/know/concept/time-independent-perturbation-theory/source.md
@@ -0,0 +1,319 @@
+% Time-independent perturbation theory
+
+
+# Time-independent perturbation theory
+
+*Time-independent perturbation theory*, sometimes also called
+*stationary state perturbation theory*, is a specific application of
+perturbation theory to the time-independent Schrödinger
+equation in quantum physics, for
+Hamiltonians of the following form:
+
+$$\begin{aligned}
+ \hat{H} = \hat{H}_0 + \lambda \hat{H}_1
+\end{aligned}$$
+
+Where $\hat{H}_0$ is a Hamiltonian for which the time-independent
+Schrödinger equation has a known solution, and $\hat{H}_1$ is a small
+perturbing Hamiltonian. The eigenenergies $E_n$ and eigenstates
+$\ket{\psi_n}$ of the composite problem are expanded accordingly in the
+perturbation "bookkeeping" parameter $\lambda$:
+
+$$\begin{aligned}
+ \ket{\psi_n}
+ &= \ket{\psi_n^{(0)}} + \lambda \ket{\psi_n^{(1)}} + \lambda^2 \ket{\psi_n^{(2)}} + ...
+ \\
+ E_n
+ &= E_n^{(0)} + \lambda E_n^{(1)} + \lambda^2 E_n^{(2)} + ...
+\end{aligned}$$
+
+Where $E_n^{(1)}$ and $\ket{\psi_n^{(1)}}$ are called the *first-order
+corrections*, and so on for higher orders. We insert this into the
+Schrödinger equation:
+
+$$\begin{aligned}
+ \hat{H} \ket{\psi_n}
+ &= \hat{H}_0 \ket{\psi_n^{(0)}}
+ + \lambda \big( \hat{H}_1 \ket{\psi_n^{(0)}} + \hat{H}_0 \ket{\psi_n^{(1)}} \big) \\
+ &\qquad + \lambda^2 \big( \hat{H}_1 \ket{\psi_n^{(1)}} + \hat{H}_0 \ket{\psi_n^{(2)}} \big) + ...
+ \\
+ E_n \ket{\psi_n}
+ &= E_n^{(0)} \ket{\psi_n^{(0)}}
+ + \lambda \big( E_n^{(1)} \ket{\psi_n^{(0)}} + E_n^{(0)} \ket{\psi_n^{(1)}} \big) \\
+ &\qquad + \lambda^2 \big( E_n^{(2)} \ket{\psi_n^{(0)}} + E_n^{(1)} \ket{\psi_n^{(1)}} + E_n^{(0)} \ket{\psi_n^{(2)}} \big) + ...
+\end{aligned}$$
+
+If we collect the terms according to the order of $\lambda$, we arrive
+at the following endless series of equations, of which in practice only
+the first three are typically used:
+
+$$\begin{aligned}
+ \hat{H}_0 \ket{\psi_n^{(0)}}
+ &= E_n^{(0)} \ket{\psi_n^{(0)}}
+ \\
+ \hat{H}_1 \ket{\psi_n^{(0)}} + \hat{H}_0 \ket{\psi_n^{(1)}}
+ &= E_n^{(1)} \ket{\psi_n^{(0)}} + E_n^{(0)} \ket{\psi_n^{(1)}}
+ \\
+ \hat{H}_1 \ket{\psi_n^{(1)}} + \hat{H}_0 \ket{\psi_n^{(2)}}
+ &= E_n^{(2)} \ket{\psi_n^{(0)}} + E_n^{(1)} \ket{\psi_n^{(1)}} + E_n^{(0)} \ket{\psi_n^{(2)}}
+ \\
+ ...
+ &= ...
+\end{aligned}$$
+
+The first equation is the unperturbed problem, which we assume has
+already been solved, with eigenvalues $E_n^{(0)} = \varepsilon_n$ and
+eigenvectors $\ket{\psi_n^{(0)}} = \ket{n}$:
+
+$$\begin{aligned}
+ \hat{H}_0 \ket{n} = \varepsilon_n \ket{n}
+\end{aligned}$$
+
+The approach to solving the other two equations varies depending on
+whether this $\hat{H}_0$ has a degenerate spectrum or not.
+
+## Without degeneracy
+
+We start by assuming that there is no degeneracy, in other words, each
+$\varepsilon_n$ corresponds to one $\ket{n}$. At order $\lambda^1$, we
+rewrite the equation as follows:
+
+$$\begin{aligned}
+ (\hat{H}_1 - E_n^{(1)}) \ket{n} + (\hat{H}_0 - \varepsilon_n) \ket{\psi_n^{(1)}} = 0
+\end{aligned}$$
+
+Since $\ket{n}$ form a complete basis, we can express
+$\ket{\psi_n^{(1)}}$ in terms of them:
+
+$$\begin{aligned}
+ \ket{\psi_n^{(1)}} = \sum_{m \neq n} c_m \ket{m}
+\end{aligned}$$
+
+Importantly, $n$ has been removed from the summation to prevent dividing
+by zero later. This is allowed, because
+$\ket{\psi_n^{(1)}} - c_n \ket{n}$ also satisfies the $\lambda^1$-order
+equation for any value of $c_n$, as demonstrated here:
+
+$$\begin{aligned}
+ (\hat{H}_1 - E_n^{(1)}) \ket{n} + (\hat{H}_0 - \varepsilon_n) \ket{\psi_n^{(1)}} - (\varepsilon_n - \varepsilon_n) c_n \ket{n} = 0
+\end{aligned}$$
+
+Where we used $\hat{H}_0 \ket{n} = \varepsilon_n \ket{n}$. Inserting the
+series form of $\ket{\psi_n^{(1)}}$ into the order-$\lambda^1$ equation
+gives us:
+
+$$\begin{aligned}
+ (\hat{H}_1 - E_n^{(1)}) \ket{n} + \sum_{m \neq n} c_m (\varepsilon_m - \varepsilon_n) \ket{m} = 0
+\end{aligned}$$
+
+We then put an arbitrary basis vector $\bra{k}$ in front of this
+equation to get:
+
+$$\begin{aligned}
+ \matrixel{k}{\hat{H}_1}{n} - E_n^{(1)} \braket{k}{n} + \sum_{m \neq n} c_m (\varepsilon_m - \varepsilon_n) \braket{k}{m} = 0
+\end{aligned}$$
+
+Suppose that $k = n$. Since $\ket{n}$ form an orthonormal basis, we end
+up with:
+
+$$\begin{aligned}
+ \boxed{
+ E_n^{(1)} = \matrixel{n}{\hat{H}_1}{n}
+ }
+\end{aligned}$$
+
+In other words, the first-order energy correction $E_n^{(1)}$ is the
+expectation value of the perturbation $\hat{H}_1$ for the unperturbed
+state $\ket{n}$.
+
+Suppose now that $k \neq n$, then only one term of the summation
+survives, and we are left with the following equation, which tells us
+$c_l$:
+
+$$\begin{aligned}
+ \matrixel{k}{\hat{H}_1}{n} + c_k (\varepsilon_k - \varepsilon_n) = 0
+\end{aligned}$$
+
+We isolate this result for $c_k$ and insert it into the series form of
+$\ket{\psi_n^{(1)}}$ to get the full first-order correction to the wave
+function:
+
+$$\begin{aligned}
+ \boxed{
+ \ket{\psi_n^{(1)}}
+ = \sum_{m \neq n} \frac{\matrixel{m}{\hat{H}_1}{n}}{\varepsilon_n - \varepsilon_m} \ket{m}
+ }
+\end{aligned}$$
+
+Here it is clear why this is only valid in the non-degenerate case:
+otherwise we would divide by zero in the denominator.
+
+Next, to find the second-order correction to the energy $E_n^{(2)}$, we
+take the corresponding equation and put $\bra{n}$ in front of it:
+
+$$\begin{aligned}
+ \matrixel{n}{\hat{H}_1}{\psi_n^{(1)}} + \matrixel{n}{\hat{H}_0}{\psi_n^{(2)}}
+ &= E_n^{(2)} \braket{n}{n} + E_n^{(1)} \braket{n}{\psi_n^{(1)}} + \varepsilon_n \braket{n}{\psi_n^{(2)}}
+\end{aligned}$$
+
+Because $\hat{H}_0$ is Hermitian, we know that
+$\matrixel{n}{\hat{H}_0}{\psi_n^{(2)}} = \varepsilon_n \braket{n}{\psi_n^{(2)}}$,
+i.e. we apply it to the bra, which lets us eliminate two terms. Also,
+since $\ket{n}$ is normalized, we find:
+
+$$\begin{aligned}
+ E_n^{(2)}
+ = \matrixel{n}{\hat{H}_1}{\psi_n^{(1)}} - E_n^{(1)} \braket{n}{\psi_n^{(1)}}
+\end{aligned}$$
+
+We explicitly removed the $\ket{n}$-dependence of $\ket{\psi_n^{(1)}}$,
+so the last term is zero. By simply inserting our result for
+$\ket{\psi_n^{(1)}}$, we thus arrive at:
+
+$$\begin{aligned}
+ \boxed{
+ E_n^{(2)}
+ = \sum_{m \neq n} \frac{\big| \matrixel{m}{\hat{H}_1}{n} \big|^2}{\varepsilon_n - \varepsilon_m}
+ }
+\end{aligned}$$
+
+In practice, it is not particulary useful to calculate more corrections.
+
+## With degeneracy
+
+If $\varepsilon_n$ is $D$-fold degenerate, then its eigenstate could be
+any vector $\ket{n, d}$ from the corresponding $D$-dimensional
+eigenspace:
+
+$$\begin{aligned}
+ \hat{H}_0 \ket{n} = \varepsilon_n \ket{n}
+ \quad \mathrm{where} \quad
+ \ket{n}
+ = \sum_{d = 1}^{D} c_{d} \ket{n, d}
+\end{aligned}$$
+
+In general, adding the perturbation $\hat{H}_1$ will *lift* the
+degeneracy, meaning the perturbed states will be non-degenerate. In the
+limit $\lambda \to 0$, these $D$ perturbed states change into $D$
+orthogonal states which are all valid $\ket{n}$.
+
+However, the $\ket{n}$ that they converge to are not arbitrary: only
+certain unperturbed eigenstates are "good" states. Without $\hat{H}_1$,
+this distinction is irrelevant, but in the perturbed case it will turn
+out to be important.
+
+For now, we write $\ket{n, d}$ to refer to any orthonormal set of
+vectors in the eigenspace of $\varepsilon_n$ (not necessarily the "good"
+ones), and $\ket{n}$ to denote any linear combination of these. We then
+take the equation at order $\lambda^1$ and prepend an arbitrary
+eigenspace basis vector $\bra{n, \delta}$:
+
+$$\begin{aligned}
+ \matrixel{n, \delta}{\hat{H}_1}{n} + \matrixel{n, \delta}{\hat{H}_0}{\psi_n^{(1)}}
+ &= E_n^{(1)} \braket{n, \delta}{n} + \varepsilon_n \braket{n, \delta}{\psi_n^{(1)}}
+\end{aligned}$$
+
+Since $\hat{H}_0$ is Hermitian, we use the same trick as before to
+reduce the problem to:
+
+$$\begin{aligned}
+ \matrixel{n, \delta}{\hat{H}_1}{n}
+ &= E_n^{(1)} \braket{n, \delta}{n}
+\end{aligned}$$
+
+We express $\ket{n}$ as a linear combination of the eigenbasis vectors
+$\ket{n, d}$ to get:
+
+$$\begin{aligned}
+ \sum_{d = 1}^{D} c_d \matrixel{n, \delta}{\hat{H}_1}{n, d}
+ = E_n^{(1)} \sum_{d = 1}^{D} c_d \braket{n, \delta}{n, d}
+ = c_{\delta} E_n^{(1)}
+\end{aligned}$$
+
+Let us now interpret the summation terms as matrix elements
+$M_{\delta, d}$:
+
+$$\begin{aligned}
+ M_{\delta, d} = \matrixel{n, \delta}{\hat{H}_1}{n, d}
+\end{aligned}$$
+
+By varying the value of $\delta$ from $1$ to $D$, we end up with
+equations of the form:
+
+$$\begin{aligned}
+ \begin{bmatrix}
+ M_{1, 1} & \cdots & M_{1, D} \\
+ \vdots & \ddots & \vdots \\
+ M_{D, 1} & \cdots & M_{D, D}
+ \end{bmatrix}
+ \begin{bmatrix}
+ c_1 \\ \vdots \\ c_D
+ \end{bmatrix}
+ = E_n^{(1)}
+ \begin{bmatrix}
+ c_1 \\ \vdots \\ c_D
+ \end{bmatrix}
+\end{aligned}$$
+
+This is an eigenvalue problem for $E_n^{(1)}$, where $c_d$ are the
+components of the eigenvectors which represent the "good" states.
+Suppose that this eigenvalue problem has been solved, and that
+$\ket{n, g}$ are the resulting "good" states. Then, as long as
+$E_n^{(1)}$ is a non-degenerate eigenvalue of $M$:
+
+$$\begin{aligned}
+ \boxed{
+ E_{n, g}^{(1)} = \matrixel{n, g}{\hat{H}_1}{n, g}
+ }
+\end{aligned}$$
+
+Which is the same as in the non-degenerate case! Even better, the
+first-order wave function correction is also unchanged:
+
+$$\begin{aligned}
+ \boxed{
+ \ket{\psi_{n,g}^{(1)}}
+ = \sum_{m \neq (n, g)} \frac{\matrixel{m}{\hat{H}_1}{n, g}}{\varepsilon_n - \varepsilon_m} \ket{m}
+ }
+\end{aligned}$$
+
+This works because the matrix $M$ is diagonal in the $\ket{n, g}$-basis,
+such that when $\ket{m}$ is any vector $\ket{n, \gamma}$ in the
+$\ket{n}$-eigenspace (except for $\ket{n,g}$ of course, which is
+explicitly excluded), then conveniently the corresponding numerator
+$\matrixel{n, \gamma}{\hat{H}_1}{n, g} = M_{\gamma, g} = 0$, so the term
+does not contribute.
+
+If any of the eigenvalues $E_n^{(1)}$ of $M$ are degenerate, then there
+is still some information missing about the components $c_d$ of the
+"good" states, in which case we must find these states some other way.
+
+An alternative way of determining these "good" states is also of
+interest if there is no degeneracy in $M$, since such a shortcut would
+allow us use the formulae from non-degenerate perturbation theory
+straight away.
+
+The method is to find a Hermitian operator $\hat{L}$ (usually using
+symmetry) which commutes with both $\hat{H}_0$ and $\hat{H}_1$:
+
+$$\begin{aligned}
+= [\hat{L}, \hat{H}_1] = 0
+\end{aligned}$$
+
+So that it shares its eigenstates with $\hat{H}_0$ (and $\hat{H}_1$),
+meaning at least $D$ of the vectors of the $D$-dimensional
+$\ket{n}$-eigenspace are also eigenvectors of $\hat{L}$.
+
+The crucial part, however, is that $\hat{L}$ must be chosen such that
+$\ket{n, d_1}$ and $\ket{n, d_2}$ have distinct eigenvalues
+$\ell_1 \neq \ell_2$ for $d_1 \neq d_2$:
+
+$$\begin{aligned}
+ \hat{L} \ket{n, b_1} = \ell_1 \ket{n, b_1}
+ \qquad
+ \hat{L} \ket{n, b_2} = \ell_2 \ket{n, b_2}
+\end{aligned}$$
+
+When this holds for any orthogonal choice of $\ket{n, d_1}$ and
+$\ket{n, d_2}$, then these specific eigenvectors of $\hat{L}$ are the
+"good states", for any valid choice of $\hat{L}$.
diff --git a/static/know/concept/time-independent-perturbation-theory/index.html b/static/know/concept/time-independent-perturbation-theory/index.html
new file mode 100644
index 0000000..eeb53a3
--- /dev/null
+++ b/static/know/concept/time-independent-perturbation-theory/index.html
@@ -0,0 +1,230 @@
+<!DOCTYPE html>
+<html xmlns="http://www.w3.org/1999/xhtml" lang="" xml:lang="">
+<head>
+ <meta charset="utf-8" />
+ <meta name="generator" content="pandoc" />
+ <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes" />
+ <title>Prefetch | Time-independent perturbation theory</title>
+ <link rel="icon" href="data:,">
+ <style>
+ body {
+ background:#ddd;
+ color:#222;
+ max-width:80ch;
+ text-align:justify;
+ margin:auto;
+ padding:1em 0;
+ font-family:sans-serif;
+ line-height:1.3;
+ }
+ a {text-decoration:none;color:#00f;}
+ h1,h2,h3 {text-align:center}
+ h1 {font-size:200%;}
+ h2 {font-size:160%;}
+ h3 {font-size:120%;}
+ .nav {height:3rem;font-size:250%;}
+ .nav a:link,a:visited {color:#222;}
+ .nav a:hover,a:focus,a:active {color:#00f;}
+ .navl {width:30%;float:left;text-align:left;}
+ .navr {width:70%;float:left;text-align:right;}
+ pre {filter:invert(100%);}
+ @media (prefers-color-scheme: dark) {
+ body {background:#222;filter:invert(100%);}
+ } </style>
+ <script>
+ MathJax = {
+ loader: {load: ["[tex]/physics"]},
+ tex: {packages: {"[+]": ["physics"]}}
+ };
+ </script>
+ <script src="/mathjax/tex-svg.js" type="text/javascript"></script>
+ </head>
+<body>
+<div class="nav">
+<div class="navl"><a href="/">PREFETCH</a></div>
+<div class="navr">
+<a href="/blog/">blog</a>&emsp;
+<a href="/code/">code</a>&emsp;
+<a href="/know/">know</a>
+</div>
+</div>
+<hr>
+<h1 id="time-independent-perturbation-theory">Time-independent perturbation theory</h1>
+<p><em>Time-independent perturbation theory</em>, sometimes also called <em>stationary state perturbation theory</em>, is a specific application of perturbation theory to the time-independent Schrödinger equation in quantum physics, for Hamiltonians of the following form:</p>
+<p><span class="math display">\[\begin{aligned}
+ \hat{H} = \hat{H}_0 + \lambda \hat{H}_1
+\end{aligned}\]</span></p>
+<p>Where <span class="math inline">\(\hat{H}_0\)</span> is a Hamiltonian for which the time-independent Schrödinger equation has a known solution, and <span class="math inline">\(\hat{H}_1\)</span> is a small perturbing Hamiltonian. The eigenenergies <span class="math inline">\(E_n\)</span> and eigenstates <span class="math inline">\(\ket{\psi_n}\)</span> of the composite problem are expanded accordingly in the perturbation “bookkeeping” parameter <span class="math inline">\(\lambda\)</span>:</p>
+<p><span class="math display">\[\begin{aligned}
+ \ket{\psi_n}
+ &amp;= \ket{\psi_n^{(0)}} + \lambda \ket{\psi_n^{(1)}} + \lambda^2 \ket{\psi_n^{(2)}} + ...
+ \\
+ E_n
+ &amp;= E_n^{(0)} + \lambda E_n^{(1)} + \lambda^2 E_n^{(2)} + ...
+\end{aligned}\]</span></p>
+<p>Where <span class="math inline">\(E_n^{(1)}\)</span> and <span class="math inline">\(\ket{\psi_n^{(1)}}\)</span> are called the <em>first-order corrections</em>, and so on for higher orders. We insert this into the Schrödinger equation:</p>
+<p><span class="math display">\[\begin{aligned}
+ \hat{H} \ket{\psi_n}
+ &amp;= \hat{H}_0 \ket{\psi_n^{(0)}}
+ + \lambda \big( \hat{H}_1 \ket{\psi_n^{(0)}} + \hat{H}_0 \ket{\psi_n^{(1)}} \big) \\
+ &amp;\qquad + \lambda^2 \big( \hat{H}_1 \ket{\psi_n^{(1)}} + \hat{H}_0 \ket{\psi_n^{(2)}} \big) + ...
+ \\
+ E_n \ket{\psi_n}
+ &amp;= E_n^{(0)} \ket{\psi_n^{(0)}}
+ + \lambda \big( E_n^{(1)} \ket{\psi_n^{(0)}} + E_n^{(0)} \ket{\psi_n^{(1)}} \big) \\
+ &amp;\qquad + \lambda^2 \big( E_n^{(2)} \ket{\psi_n^{(0)}} + E_n^{(1)} \ket{\psi_n^{(1)}} + E_n^{(0)} \ket{\psi_n^{(2)}} \big) + ...
+\end{aligned}\]</span></p>
+<p>If we collect the terms according to the order of <span class="math inline">\(\lambda\)</span>, we arrive at the following endless series of equations, of which in practice only the first three are typically used:</p>
+<p><span class="math display">\[\begin{aligned}
+ \hat{H}_0 \ket{\psi_n^{(0)}}
+ &amp;= E_n^{(0)} \ket{\psi_n^{(0)}}
+ \\
+ \hat{H}_1 \ket{\psi_n^{(0)}} + \hat{H}_0 \ket{\psi_n^{(1)}}
+ &amp;= E_n^{(1)} \ket{\psi_n^{(0)}} + E_n^{(0)} \ket{\psi_n^{(1)}}
+ \\
+ \hat{H}_1 \ket{\psi_n^{(1)}} + \hat{H}_0 \ket{\psi_n^{(2)}}
+ &amp;= E_n^{(2)} \ket{\psi_n^{(0)}} + E_n^{(1)} \ket{\psi_n^{(1)}} + E_n^{(0)} \ket{\psi_n^{(2)}}
+ \\
+ ...
+ &amp;= ...
+\end{aligned}\]</span></p>
+<p>The first equation is the unperturbed problem, which we assume has already been solved, with eigenvalues <span class="math inline">\(E_n^{(0)} = \varepsilon_n\)</span> and eigenvectors <span class="math inline">\(\ket{\psi_n^{(0)}} = \ket{n}\)</span>:</p>
+<p><span class="math display">\[\begin{aligned}
+ \hat{H}_0 \ket{n} = \varepsilon_n \ket{n}
+\end{aligned}\]</span></p>
+<p>The approach to solving the other two equations varies depending on whether this <span class="math inline">\(\hat{H}_0\)</span> has a degenerate spectrum or not.</p>
+<h2 id="without-degeneracy">Without degeneracy</h2>
+<p>We start by assuming that there is no degeneracy, in other words, each <span class="math inline">\(\varepsilon_n\)</span> corresponds to one <span class="math inline">\(\ket{n}\)</span>. At order <span class="math inline">\(\lambda^1\)</span>, we rewrite the equation as follows:</p>
+<p><span class="math display">\[\begin{aligned}
+ (\hat{H}_1 - E_n^{(1)}) \ket{n} + (\hat{H}_0 - \varepsilon_n) \ket{\psi_n^{(1)}} = 0
+\end{aligned}\]</span></p>
+<p>Since <span class="math inline">\(\ket{n}\)</span> form a complete basis, we can express <span class="math inline">\(\ket{\psi_n^{(1)}}\)</span> in terms of them:</p>
+<p><span class="math display">\[\begin{aligned}
+ \ket{\psi_n^{(1)}} = \sum_{m \neq n} c_m \ket{m}
+\end{aligned}\]</span></p>
+<p>Importantly, <span class="math inline">\(n\)</span> has been removed from the summation to prevent dividing by zero later. This is allowed, because <span class="math inline">\(\ket{\psi_n^{(1)}} - c_n \ket{n}\)</span> also satisfies the <span class="math inline">\(\lambda^1\)</span>-order equation for any value of <span class="math inline">\(c_n\)</span>, as demonstrated here:</p>
+<p><span class="math display">\[\begin{aligned}
+ (\hat{H}_1 - E_n^{(1)}) \ket{n} + (\hat{H}_0 - \varepsilon_n) \ket{\psi_n^{(1)}} - (\varepsilon_n - \varepsilon_n) c_n \ket{n} = 0
+\end{aligned}\]</span></p>
+<p>Where we used <span class="math inline">\(\hat{H}_0 \ket{n} = \varepsilon_n \ket{n}\)</span>. Inserting the series form of <span class="math inline">\(\ket{\psi_n^{(1)}}\)</span> into the order-<span class="math inline">\(\lambda^1\)</span> equation gives us:</p>
+<p><span class="math display">\[\begin{aligned}
+ (\hat{H}_1 - E_n^{(1)}) \ket{n} + \sum_{m \neq n} c_m (\varepsilon_m - \varepsilon_n) \ket{m} = 0
+\end{aligned}\]</span></p>
+<p>We then put an arbitrary basis vector <span class="math inline">\(\bra{k}\)</span> in front of this equation to get:</p>
+<p><span class="math display">\[\begin{aligned}
+ \matrixel{k}{\hat{H}_1}{n} - E_n^{(1)} \braket{k}{n} + \sum_{m \neq n} c_m (\varepsilon_m - \varepsilon_n) \braket{k}{m} = 0
+\end{aligned}\]</span></p>
+<p>Suppose that <span class="math inline">\(k = n\)</span>. Since <span class="math inline">\(\ket{n}\)</span> form an orthonormal basis, we end up with:</p>
+<p><span class="math display">\[\begin{aligned}
+ \boxed{
+ E_n^{(1)} = \matrixel{n}{\hat{H}_1}{n}
+ }
+\end{aligned}\]</span></p>
+<p>In other words, the first-order energy correction <span class="math inline">\(E_n^{(1)}\)</span> is the expectation value of the perturbation <span class="math inline">\(\hat{H}_1\)</span> for the unperturbed state <span class="math inline">\(\ket{n}\)</span>.</p>
+<p>Suppose now that <span class="math inline">\(k \neq n\)</span>, then only one term of the summation survives, and we are left with the following equation, which tells us <span class="math inline">\(c_l\)</span>:</p>
+<p><span class="math display">\[\begin{aligned}
+ \matrixel{k}{\hat{H}_1}{n} + c_k (\varepsilon_k - \varepsilon_n) = 0
+\end{aligned}\]</span></p>
+<p>We isolate this result for <span class="math inline">\(c_k\)</span> and insert it into the series form of <span class="math inline">\(\ket{\psi_n^{(1)}}\)</span> to get the full first-order correction to the wave function:</p>
+<p><span class="math display">\[\begin{aligned}
+ \boxed{
+ \ket{\psi_n^{(1)}}
+ = \sum_{m \neq n} \frac{\matrixel{m}{\hat{H}_1}{n}}{\varepsilon_n - \varepsilon_m} \ket{m}
+ }
+\end{aligned}\]</span></p>
+<p>Here it is clear why this is only valid in the non-degenerate case: otherwise we would divide by zero in the denominator.</p>
+<p>Next, to find the second-order correction to the energy <span class="math inline">\(E_n^{(2)}\)</span>, we take the corresponding equation and put <span class="math inline">\(\bra{n}\)</span> in front of it:</p>
+<p><span class="math display">\[\begin{aligned}
+ \matrixel{n}{\hat{H}_1}{\psi_n^{(1)}} + \matrixel{n}{\hat{H}_0}{\psi_n^{(2)}}
+ &amp;= E_n^{(2)} \braket{n}{n} + E_n^{(1)} \braket{n}{\psi_n^{(1)}} + \varepsilon_n \braket{n}{\psi_n^{(2)}}
+\end{aligned}\]</span></p>
+<p>Because <span class="math inline">\(\hat{H}_0\)</span> is Hermitian, we know that <span class="math inline">\(\matrixel{n}{\hat{H}_0}{\psi_n^{(2)}} = \varepsilon_n \braket{n}{\psi_n^{(2)}}\)</span>, i.e. we apply it to the bra, which lets us eliminate two terms. Also, since <span class="math inline">\(\ket{n}\)</span> is normalized, we find:</p>
+<p><span class="math display">\[\begin{aligned}
+ E_n^{(2)}
+ = \matrixel{n}{\hat{H}_1}{\psi_n^{(1)}} - E_n^{(1)} \braket{n}{\psi_n^{(1)}}
+\end{aligned}\]</span></p>
+<p>We explicitly removed the <span class="math inline">\(\ket{n}\)</span>-dependence of <span class="math inline">\(\ket{\psi_n^{(1)}}\)</span>, so the last term is zero. By simply inserting our result for <span class="math inline">\(\ket{\psi_n^{(1)}}\)</span>, we thus arrive at:</p>
+<p><span class="math display">\[\begin{aligned}
+ \boxed{
+ E_n^{(2)}
+ = \sum_{m \neq n} \frac{\big| \matrixel{m}{\hat{H}_1}{n} \big|^2}{\varepsilon_n - \varepsilon_m}
+ }
+\end{aligned}\]</span></p>
+<p>In practice, it is not particulary useful to calculate more corrections.</p>
+<h2 id="with-degeneracy">With degeneracy</h2>
+<p>If <span class="math inline">\(\varepsilon_n\)</span> is <span class="math inline">\(D\)</span>-fold degenerate, then its eigenstate could be any vector <span class="math inline">\(\ket{n, d}\)</span> from the corresponding <span class="math inline">\(D\)</span>-dimensional eigenspace:</p>
+<p><span class="math display">\[\begin{aligned}
+ \hat{H}_0 \ket{n} = \varepsilon_n \ket{n}
+ \quad \mathrm{where} \quad
+ \ket{n}
+ = \sum_{d = 1}^{D} c_{d} \ket{n, d}
+\end{aligned}\]</span></p>
+<p>In general, adding the perturbation <span class="math inline">\(\hat{H}_1\)</span> will <em>lift</em> the degeneracy, meaning the perturbed states will be non-degenerate. In the limit <span class="math inline">\(\lambda \to 0\)</span>, these <span class="math inline">\(D\)</span> perturbed states change into <span class="math inline">\(D\)</span> orthogonal states which are all valid <span class="math inline">\(\ket{n}\)</span>.</p>
+<p>However, the <span class="math inline">\(\ket{n}\)</span> that they converge to are not arbitrary: only certain unperturbed eigenstates are “good” states. Without <span class="math inline">\(\hat{H}_1\)</span>, this distinction is irrelevant, but in the perturbed case it will turn out to be important.</p>
+<p>For now, we write <span class="math inline">\(\ket{n, d}\)</span> to refer to any orthonormal set of vectors in the eigenspace of <span class="math inline">\(\varepsilon_n\)</span> (not necessarily the “good” ones), and <span class="math inline">\(\ket{n}\)</span> to denote any linear combination of these. We then take the equation at order <span class="math inline">\(\lambda^1\)</span> and prepend an arbitrary eigenspace basis vector <span class="math inline">\(\bra{n, \delta}\)</span>:</p>
+<p><span class="math display">\[\begin{aligned}
+ \matrixel{n, \delta}{\hat{H}_1}{n} + \matrixel{n, \delta}{\hat{H}_0}{\psi_n^{(1)}}
+ &amp;= E_n^{(1)} \braket{n, \delta}{n} + \varepsilon_n \braket{n, \delta}{\psi_n^{(1)}}
+\end{aligned}\]</span></p>
+<p>Since <span class="math inline">\(\hat{H}_0\)</span> is Hermitian, we use the same trick as before to reduce the problem to:</p>
+<p><span class="math display">\[\begin{aligned}
+ \matrixel{n, \delta}{\hat{H}_1}{n}
+ &amp;= E_n^{(1)} \braket{n, \delta}{n}
+\end{aligned}\]</span></p>
+<p>We express <span class="math inline">\(\ket{n}\)</span> as a linear combination of the eigenbasis vectors <span class="math inline">\(\ket{n, d}\)</span> to get:</p>
+<p><span class="math display">\[\begin{aligned}
+ \sum_{d = 1}^{D} c_d \matrixel{n, \delta}{\hat{H}_1}{n, d}
+ = E_n^{(1)} \sum_{d = 1}^{D} c_d \braket{n, \delta}{n, d}
+ = c_{\delta} E_n^{(1)}
+\end{aligned}\]</span></p>
+<p>Let us now interpret the summation terms as matrix elements <span class="math inline">\(M_{\delta, d}\)</span>:</p>
+<p><span class="math display">\[\begin{aligned}
+ M_{\delta, d} = \matrixel{n, \delta}{\hat{H}_1}{n, d}
+\end{aligned}\]</span></p>
+<p>By varying the value of <span class="math inline">\(\delta\)</span> from <span class="math inline">\(1\)</span> to <span class="math inline">\(D\)</span>, we end up with equations of the form:</p>
+<p><span class="math display">\[\begin{aligned}
+ \begin{bmatrix}
+ M_{1, 1} &amp; \cdots &amp; M_{1, D} \\
+ \vdots &amp; \ddots &amp; \vdots \\
+ M_{D, 1} &amp; \cdots &amp; M_{D, D}
+ \end{bmatrix}
+ \begin{bmatrix}
+ c_1 \\ \vdots \\ c_D
+ \end{bmatrix}
+ = E_n^{(1)}
+ \begin{bmatrix}
+ c_1 \\ \vdots \\ c_D
+ \end{bmatrix}
+\end{aligned}\]</span></p>
+<p>This is an eigenvalue problem for <span class="math inline">\(E_n^{(1)}\)</span>, where <span class="math inline">\(c_d\)</span> are the components of the eigenvectors which represent the “good” states. Suppose that this eigenvalue problem has been solved, and that <span class="math inline">\(\ket{n, g}\)</span> are the resulting “good” states. Then, as long as <span class="math inline">\(E_n^{(1)}\)</span> is a non-degenerate eigenvalue of <span class="math inline">\(M\)</span>:</p>
+<p><span class="math display">\[\begin{aligned}
+ \boxed{
+ E_{n, g}^{(1)} = \matrixel{n, g}{\hat{H}_1}{n, g}
+ }
+\end{aligned}\]</span></p>
+<p>Which is the same as in the non-degenerate case! Even better, the first-order wave function correction is also unchanged:</p>
+<p><span class="math display">\[\begin{aligned}
+ \boxed{
+ \ket{\psi_{n,g}^{(1)}}
+ = \sum_{m \neq (n, g)} \frac{\matrixel{m}{\hat{H}_1}{n, g}}{\varepsilon_n - \varepsilon_m} \ket{m}
+ }
+\end{aligned}\]</span></p>
+<p>This works because the matrix <span class="math inline">\(M\)</span> is diagonal in the <span class="math inline">\(\ket{n, g}\)</span>-basis, such that when <span class="math inline">\(\ket{m}\)</span> is any vector <span class="math inline">\(\ket{n, \gamma}\)</span> in the <span class="math inline">\(\ket{n}\)</span>-eigenspace (except for <span class="math inline">\(\ket{n,g}\)</span> of course, which is explicitly excluded), then conveniently the corresponding numerator <span class="math inline">\(\matrixel{n, \gamma}{\hat{H}_1}{n, g} = M_{\gamma, g} = 0\)</span>, so the term does not contribute.</p>
+<p>If any of the eigenvalues <span class="math inline">\(E_n^{(1)}\)</span> of <span class="math inline">\(M\)</span> are degenerate, then there is still some information missing about the components <span class="math inline">\(c_d\)</span> of the “good” states, in which case we must find these states some other way.</p>
+<p>An alternative way of determining these “good” states is also of interest if there is no degeneracy in <span class="math inline">\(M\)</span>, since such a shortcut would allow us use the formulae from non-degenerate perturbation theory straight away.</p>
+<p>The method is to find a Hermitian operator <span class="math inline">\(\hat{L}\)</span> (usually using symmetry) which commutes with both <span class="math inline">\(\hat{H}_0\)</span> and <span class="math inline">\(\hat{H}_1\)</span>:</p>
+<p><span class="math display">\[\begin{aligned}
+= [\hat{L}, \hat{H}_1] = 0
+\end{aligned}\]</span></p>
+<p>So that it shares its eigenstates with <span class="math inline">\(\hat{H}_0\)</span> (and <span class="math inline">\(\hat{H}_1\)</span>), meaning at least <span class="math inline">\(D\)</span> of the vectors of the <span class="math inline">\(D\)</span>-dimensional <span class="math inline">\(\ket{n}\)</span>-eigenspace are also eigenvectors of <span class="math inline">\(\hat{L}\)</span>.</p>
+<p>The crucial part, however, is that <span class="math inline">\(\hat{L}\)</span> must be chosen such that <span class="math inline">\(\ket{n, d_1}\)</span> and <span class="math inline">\(\ket{n, d_2}\)</span> have distinct eigenvalues <span class="math inline">\(\ell_1 \neq \ell_2\)</span> for <span class="math inline">\(d_1 \neq d_2\)</span>:</p>
+<p><span class="math display">\[\begin{aligned}
+ \hat{L} \ket{n, b_1} = \ell_1 \ket{n, b_1}
+ \qquad
+ \hat{L} \ket{n, b_2} = \ell_2 \ket{n, b_2}
+\end{aligned}\]</span></p>
+<p>When this holds for any orthogonal choice of <span class="math inline">\(\ket{n, d_1}\)</span> and <span class="math inline">\(\ket{n, d_2}\)</span>, then these specific eigenvectors of <span class="math inline">\(\hat{L}\)</span> are the “good states”, for any valid choice of <span class="math inline">\(\hat{L}\)</span>.</p>
+<hr>
+&copy; &quot;Prefetch&quot;. Licensed under <a href="https://creativecommons.org/licenses/by-sa/4.0/">CC BY-SA 4.0</a>.
+</body>
+</html>