summaryrefslogtreecommitdiff
path: root/latex/know/concept/dirac-delta-function
diff options
context:
space:
mode:
Diffstat (limited to 'latex/know/concept/dirac-delta-function')
-rw-r--r--latex/know/concept/dirac-delta-function/source.md99
1 files changed, 99 insertions, 0 deletions
diff --git a/latex/know/concept/dirac-delta-function/source.md b/latex/know/concept/dirac-delta-function/source.md
new file mode 100644
index 0000000..478efb4
--- /dev/null
+++ b/latex/know/concept/dirac-delta-function/source.md
@@ -0,0 +1,99 @@
+% Dirac delta function
+
+
+# Dirac delta function
+
+The **Dirac delta function** $\delta(x)$, often just called the **delta function**,
+is an infinitely narrow discontinuous "spike" at $x = 0$ whose area is
+defined to be 1:
+
+$$\begin{aligned}
+ \boxed{
+ \delta(x) =
+ \begin{cases}
+ +\infty & \mathrm{if}\: x = 0 \\
+ 0 & \mathrm{if}\: x \neq 0
+ \end{cases}
+ \quad \mathrm{and} \quad
+ \int_{-\varepsilon}^\varepsilon \delta(x) \dd{x} = 1
+ }
+\end{aligned}$$
+
+It is sometimes also called the **sampling function**, due to its most
+important property: the so-called **sampling property**:
+
+$$\begin{aligned}
+ \boxed{
+ \int f(x) \: \delta(x - x_0) \: dx = \int f(x) \: \delta(x_0 - x) \: dx = f(x_0)
+ }
+\end{aligned}$$
+
+$\delta(x)$ is thus an effective weapon against integrals. This may not seem very
+useful due to its "unnatural" definition, but in fact it appears as the
+limit of several reasonable functions:
+
+$$\begin{aligned}
+ \delta(x)
+ = \lim_{n \to +\infty} \!\Big\{ \frac{n}{\sqrt{\pi}} \exp(- n^2 x^2) \Big\}
+ = \lim_{n \to +\infty} \!\Big\{ \frac{n}{\pi} \frac{1}{1 + n^2 x^2} \Big\}
+ = \lim_{n \to +\infty} \!\Big\{ \frac{\sin(n x)}{\pi x} \Big\}
+\end{aligned}$$
+
+The last one is especially important, since it is equivalent to the
+following integral, which appears very often in the context of
+Fourier transforms:
+
+$$\begin{aligned}
+ \boxed{
+ \delta(x)
+ %= \lim_{n \to +\infty} \!\Big\{\frac{\sin(n x)}{\pi x}\Big\}
+ = \frac{1}{2\pi} \int_{-\infty}^\infty \exp(i k x) \dd{k}
+ \propto \hat{\mathcal{F}}\{1\}
+ }
+\end{aligned}$$
+
+When the argument of $\delta(x)$ is scaled, the delta function is itself scaled:
+
+$$\begin{aligned}
+ \boxed{
+ \delta(s x) = \frac{1}{|s|} \delta(x)
+ }
+\end{aligned}$$
+
+*__Proof.__ Because it is symmetric, $\delta(s x) = \delta(|s| x)$. Then by
+substituting $\sigma = |s| x$:*
+
+$$\begin{aligned}
+ \int \delta(|s| x) \dd{x}
+ &= \frac{1}{|s|} \int \delta(\sigma) \dd{\sigma} = \frac{1}{|s|}
+\end{aligned}$$
+
+*__Q.E.D.__*
+
+An even more impressive property is the behaviour of the derivative of
+$\delta(x)$:
+
+$$\begin{aligned}
+ \boxed{
+ \int f(\xi) \: \delta'(x - \xi) \dd{\xi} = f'(x)
+ }
+\end{aligned}$$
+
+*__Proof.__ Be careful about which variable is used for the
+differentiation:*
+
+$$\begin{aligned}
+ \int f(\xi) \: \frac{d\delta(x - \xi)}{dx} \dd{\xi}
+ &= \frac{d}{dx} \int f(\xi) \: \delta(x - \xi) \dd{x}
+ = f'(x)
+\end{aligned}$$
+
+*__Q.E.D.__*
+
+This property also generalizes nicely for the higher-order derivatives:
+
+$$\begin{aligned}
+ \boxed{
+ \int f(\xi) \: \frac{d^n \delta(x - \xi)}{dx^n} \dd{\xi} = \dv[n]{f(x)}{x}
+ }
+\end{aligned}$$