summaryrefslogtreecommitdiff
path: root/static/know/concept
diff options
context:
space:
mode:
Diffstat (limited to 'static/know/concept')
-rw-r--r--static/know/concept/blochs-theorem/index.html13
1 files changed, 9 insertions, 4 deletions
diff --git a/static/know/concept/blochs-theorem/index.html b/static/know/concept/blochs-theorem/index.html
index 9710710..d900aba 100644
--- a/static/know/concept/blochs-theorem/index.html
+++ b/static/know/concept/blochs-theorem/index.html
@@ -5,6 +5,7 @@
<meta name="generator" content="pandoc" />
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes" />
<title>Prefetch | Bloch’s theorem</title>
+ <link rel="icon" href="data:,">
<style>
body {
background:#ddd;
@@ -30,7 +31,13 @@
@media (prefers-color-scheme: dark) {
body {background:#222;filter:invert(100%);}
} </style>
- <script src="/mathjax/tex-svg.js" type="text/javascript"></script>
+ <script>
+ MathJax = {
+ loader: {load: ["[tex]/physics"]},
+ tex: {packages: {"[+]": ["physics"]}}
+ };
+ </script>
+ <script src="/mathjax/tex-chtml.js" type="text/javascript"></script>
</head>
<body>
<div class="nav">
@@ -42,7 +49,6 @@
</div>
</div>
<hr>
-
<h1 id="blochs-theorem">Bloch’s theorem</h1>
<p>In quantum mechanics, <em>Bloch’s theorem</em> states that, given a potential <span class="math inline">\(V(\vec{r})\)</span> which is periodic on a lattice, i.e. <span class="math inline">\(V(\vec{r}) = V(\vec{r} + \vec{a})\)</span> for a primitive lattice vector <span class="math inline">\(\vec{a}\)</span>, then it follows that the solutions <span class="math inline">\(\psi(\vec{r})\)</span> to the time-independent Schrödinger equation take the following form, where the function <span class="math inline">\(u(\vec{r})\)</span> is periodic on the same lattice, i.e. <span class="math inline">\(u(\vec{r}) = u(\vec{r} + \vec{a})\)</span>:</p>
<p><span class="math display">\[
@@ -53,7 +59,7 @@
\end{aligned}
\]</span></p>
<p>In other words, in a periodic potential, the solutions are simply plane waves with a periodic modulation, known as <em>Bloch functions</em> or <em>Bloch states</em>.</p>
-<p>This is suprisingly easy to prove: if the Hamiltonian <span class="math inline">\(\hat{H}\)</span> is lattice-periodic, then it will commute with the unitary translation operator <span class="math inline">\(\hat{T}(\vec{a})\)</span>, i.e. <span class="math inline">\([\hat{H}, \hat{T}(\vec{a})] = 0\)</span>. Therefore <span class="math inline">\(\hat{H}\)</span> and <span class="math inline">\(\hat{T}(\vec{a})\)</span> must share eigenstates <span class="math inline">\(\psi(\vec{r})\)</span>:</p>
+<p>This is suprisingly easy to prove: if the Hamiltonian <span class="math inline">\(\hat{H}\)</span> is lattice-periodic, then it will commute with the unitary translation operator <span class="math inline">\(\hat{T}(\vec{a})\)</span>, i.e. <span class="math inline">\(\comm{\hat{H}}{\hat{T}(\vec{a})} = 0\)</span>. Therefore <span class="math inline">\(\hat{H}\)</span> and <span class="math inline">\(\hat{T}(\vec{a})\)</span> must share eigenstates <span class="math inline">\(\psi(\vec{r})\)</span>:</p>
<p><span class="math display">\[
\begin{aligned}
\hat{H} \:\psi(\vec{r}) = E \:\psi(\vec{r})
@@ -91,7 +97,6 @@
\end{aligned}
\]</span></p>
<p>Then Bloch’s theorem follows from isolating the definition of <span class="math inline">\(u(\vec{r})\)</span> for <span class="math inline">\(\psi(\vec{r})\)</span>.</p>
-
<hr>
&copy; &quot;Prefetch&quot;. Licensed under <a href="https://creativecommons.org/licenses/by-sa/4.0/">CC BY-SA 4.0</a>.
</body>